首页> 外文OA文献 >Sequential Statistical Signal Processing with Applications to Distributed Systems
【2h】

Sequential Statistical Signal Processing with Applications to Distributed Systems

机译:顺序统计信号处理及其在分布式系统中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Detection and estimation, two classical statistical signal processing problems with wellestablished theories, are traditionally studied under the fixed-sample-size and centralized setups, e.g., Neyman-Pearson target detection, and Bayesian parameter estimation. Recently, they appear in more challenging setups with stringent constraints on critical resources, e.g., time, energy, and bandwidth, in emerging technologies, such as wireless sensor networks, cognitive radio, smart grid, cyber-physical systems (CPS), internet of things (IoT), and networked control systems. These emerging systems have applications in a wide range of areas, such as communications, energy, the military, transportation, health care, and infrastructure. Sequential (i.e., online) methods suit much better to the ever-increasing demand on time-efficiency, and latency constraints than the conventional fixed-sample-size (i.e., offline) methods. Furthermore, as a result of decreasing device sizes and tendency to connect more and more devices, there are stringent energy and bandwidth constraints on devices (i.e., nodes) in a distributed system (i.e., network), requiring decentralized operation with low transmission rates. Hence, for statistical inference (e.g., detection and/or estimation) problems in distributed systems, today's challenge is achieving high performance (e.g., time efficiency) while satisfying resource (e.g., energy and bandwidth) constraints. In this thesis, we address this challenge by (i) first finding optimum (centralized) sequential schemes for detection, estimation, and joint detection and estimation if not available in the literature, (ii) and then developing their asymptotically optimal decentralized versions through an adaptive non-uniform sampling technique called level-triggered sampling. We propose and rigorously analyze decentralized detection, estimation, and joint detection and estimation schemes based on level-triggered sampling, resulting in a systematic theory of event-based statistical signal processing. We also show both analytically and numerically that the proposed schemes significantly outperform their counterparts based on conventional uniform sampling in terms of time efficiency. Moreover, they are compatible with the existing hardware as they work with discrete-time observations produced by conventional A/D converters. We apply the developed schemes to several problems, namely spectrum sensing and dynamic spectrum access in cognitive radio, state estimation and outage detection in smart grid, and target detection in multi-input multi-output (MIMO) wireless sensor networks.
机译:传统上,在固定样本大小和集中式设置(例如Neyman-Pearson目标检测和贝叶斯参数估计)下研究检测和估计这两个具有完善理论的经典统计信号处理问题。最近,它们出现在更具挑战性的设置中,在诸如无线传感器网络,认知无线电,智能电网,网络物理系统(CPS),互联网等新兴技术中,对关键资源(例如时间,能源和带宽)的严格限制受到严格限制。物联网(IoT)和网络控制系统。这些新兴系统在通讯,能源,军事,运输,医疗保健和基础设施等广泛领域具有应用。与常规的固定样本大小(即离线)方法相比,顺序(即在线)方法更适合于对时间效率和等待时间限制不断增长的需求。此外,由于减小的设备尺寸和连接越来越多的设备的趋势,在分布式系统(即,网络)中的设备(即,节点)上存在严格的能量和带宽约束,要求分散的操作和低传输速率。因此,对于分布式系统中的统计推断(例如,检测和/或估计)问题,当今的挑战是在满足资源(例如,能量和带宽)约束的同时实现高性能(例如,时间效率)。在本文中,我们通过以下方法解决这一挑战:(i)首先找到最佳的(集中式)顺序方案进行检测,估计,以及联合检测和估计(如果文献中没有),然后通过自适应非均匀采样技术,称为电平触发采样。我们提出并严格分析了基于水平触发采样的分散检测,估计以及联合检测和估计方案,从而形成了基于事件的统计信号处理的系统理论。我们还从分析和数值两个方面表明,在时间效率方面,所提出的方案明显优于基于常规均匀采样的方案。此外,它们可与现有硬件兼容,因为它们可与常规A / D转换器产生的离散时间观测值一起使用。我们将开发的方案应用于几个问题,即认知无线电中的频谱感测和动态频谱访问,智能电网中的状态估计和中断检测以及多输入多输出(MIMO)无线传感器网络中的目标检测。

著录项

  • 作者

    Yilmaz Yasin;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号