首页> 外文OA文献 >(I) Zinc complexes as synthetic analogues for carbonic anhydrase and as catalysts for H2 production and CO2 functionalization . . .
【2h】

(I) Zinc complexes as synthetic analogues for carbonic anhydrase and as catalysts for H2 production and CO2 functionalization . . .

机译:(I)锌配合物,可作为碳酸酐酶的合成类似物,以及作为氢气生产和二氧化碳功能化的催化剂。 。 。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The multidentate alkyl ligand, [Tptm] ([Tptm] = tris(2-pyridylthio)methyl), provides an organometallic counterpart to the more common tripodal ligands, [Tp] ([Tp] = tris(pyrazolyl)hydroborato) and [Tm] ([Tm] = tris(2-mercaptoimidazolyl) hydroborato). A wide range of [Tptm] zinc complexes have been synthesized, enabling a diverse range of both stoichiometric and catalytic chemical transformations including the production of H2 and the functionalization of CO2. The [Tptm] ligand has been used to isolate the first mononuclear alkyl zinc hydride complex, [!3-Tptm]ZnH. The hydride complex may be easily synthesized on a multigram scale via reaction of the trimethylsiloxide complex, [!4-Tptm]ZnOSiMe3, with PhSiH3. The hydride complex, [!3-Tptm]ZnH, provides access to a variety of other [Tptm]ZnX derivatives. For example, [!3-Tptm]ZnH reacts with (i) R3SiOH (R = Me, Ph) to give [!4-Tptm]ZnOSiR3, (ii) Me3SiX (X = Cl, Br, I) to give [!4-Tptm]ZnX and (iii) CO2 to give the formate complex, [!4-Tptm]ZnO2CH. [!3-Tptm]ZnH is hydrolyzed to give the dimeric hydroxide complex, {[!3-Tptm]Zn(μ–OH)}2, which when treated with CO2, results in the bicarbonate complex, [!4-Tptm]ZnOCO2H. The halide complexes, [!4-Tptm]ZnX (X = Cl, Br, I), can be used to synthesize the fluoride complex, [!4-Tptm]ZnF, via treatment with tetrabutylammonium fluoride (TBAF). The bis(trimethylsilyl)amide complex, [!3-Tptm]ZnN(SiMe3)2, which has been prepared directly via the reaction of [Tptm]H with [ZnN(SiMe3)2]2, reacts with CO2 to give the isocyanate complex, [!4-Tptm]ZnNCO. The formation of the isocyanate complex results from a multistep sequence in which the initial step is insertion of CO2 into the Zn-N(SiMe3)2 bond to give the carbamato derivative, [Tptm]Zn[O2CN(SiMe3)2], followed by rearrangement to [!4-Tptm]ZnOSiMe3 with the expulsion of Me3SiNCO, which further reacts to give [!4-Tptm]ZnNCO. An important discovery is that the rate of the final metathesis step, to give [!4-Tptm]ZnNCO, is enhanced by CO2. Specifically, insertion of CO2 into the Zn-O bond of [!4-Tptm]ZnOSiMe3 gives the carbonate complex [!4-Tptm]Zn[O2COSiMe3], which is more susceptible towards metathesis than is the siloxide derivative. The [Tptm] ligand has also been effective for other metals, such as magnesium and nickel. While [Tptm] complexes of magnesium exhibit chemistry that is similar to that of zinc, the linear nickel nitrosyl complex, [!3-Tptm]NiNO, shows diverse reactivity involving its nitrosyl ligand. For example, oxygenation of [!3-Tptm]NiNO is reversible. The reaction of [!3-Tptm]NiNO with air gives the paramagnetic nitrite complex, [!4-Tptm]Ni[!2-O2N], the latter which may be deoxygenated via reaction with trimethylphosphine. Additionally, the tetradentate alkyl ligand, tris(1-methyl-imidazol-2- ylthio)methyl, [TitmMe], has been studied as a comparison to the [Tptm] system. The bis(trimethylsilyl)amide complex, [!3-TitmMe]ZnN(SiMe3)2 has been synthesized, and it also reacts with CO2 to give the isocyanate complex, [!4-TitmMe]ZnNCO. The hydroxide complexes, [TpBut,Me]ZnOH ([TpBut,Me] = tris(3-t-butyl-5- methylpyrazolyl)hydroborato), and {[!3-Tptm]Zn(μ–OH)}2, were used to model transformations with CO2 that are of relevance to the mechanism of action of carbonic anhydrase. Low temperature 1H and 13C NMR spectroscopic studies on solutions of the hydroxide complex, [TpBut,Me]ZnOH, in the presence of 1 atmosphere of CO2 have allowed for the identification of the bicarbonate complex, [TpBut,Me]ZnOCO2H. In the presence of less than 1 atmosphere of CO2, both [TpBut,Me]ZnOH and [TpBut,Me]ZnOCO2H may be observed in equilibrium, thereby allowing for the measurement of the equilibrium constant for insertion of CO2 into the Zn–OH bond. At 217 K, the equilibrium constant is 6 ± 2 " 103 M–1, corresponding to a value of #G = –3.8 ± 0.2 kcal mol–1. In addition to the solution-state spectroscopic studies, [TpBut,Me]ZnOCO2H and [!4-Tptm]ZnOCO2H have been structurally characterized by X-ray diffraction, thereby providing the first examples of structurally characterized terminal zinc bicarbonate complexes. The bicarbonate complexes afford important metrical data of importance to the critical bicarbonate intermediate of the mechanism of action of carbonic anhydrase. The dimeric hydroxide complex, {[!3-Tptm]Zn(μ–OH)}2, is sufficiently reactive towards CO2 that it is able to abstract CO2 directly from air to form the bridging carbonate complex, [Tptm]Zn(μ-CO3)Zn[Tptm]. Both the bicarbonate and carbonate complexes are reduced by silanes to give the formate derivative, [!4-Tptm]ZnO2CH, a transformation that is significant for the functionalization of CO2. The alkyl zinc hydride complex, [!3-Tptm]ZnH, has also proven to be an effective and robust catalyst for a variety of transformations including (i) the rapid generation of hydrogen on demand, (ii) the hydrosilylation of aldehydes and ketones producing siloxanes and (iii) the functionalization of CO2 to produce a useful formylating agent, (EtO)3SiO2CH. The trimethylsiloxide complex, [!4-Tptm]ZnOSiMe3, may also be used as an effective precatalyst for these reactions. For example, in the [!4-Tptm]ZnOSiMe3 catalyzed hydrolysis and methanolysis of PhSiH3, three equivalents of H2 are released, with the methanolysis reaction achieving 105 turnovers and turnover frequencies surpassing 106 h-1. Additionally, [!3-Bptm*]ZnO2CH (Bptm* = bis(2-pyridylthio)(p-tolylthio)methyl) has been synthesized using the tridentate [Bptm*] ligand, which has only two chelating pyridyl arms, forbidding a !4-coordination. It serves as a room temperature catalyst for the hydrosilylation of CO2, resulting in more rapid CO2 functionalization compared to the [Tptm] system. [!3-Tptm]ZnH and [!3-Bptm*]ZnO2CH provide the first two examples of zinc complexes that catalyze the hydrosilylation of CO2. These results provide evidence that, in suitable ligand environments, inexpensive and abundant nontransition metals can perform reactions that are typically catalyzed by precious metalcontaining compounds. The use of Li[Me3SiNR] in order to generate an isocyanide complex from its carbonyl precursor provides a novel, convenient synthetic method that circumvents the use of the free isocyanide as a reagent. Metal isocyanide compounds are most commonly synthesized using the free isocyanide. By contrast, the reaction of transition metal carbonyl compounds, LnMCO, with Li[Me3SiNR] yields the corresponding isocyanide derivative, LnMCNR. This reaction is driven by the cleavage of a weak silicon-nitrogen bond with concomitant formation of a stronger silicon-oxygen bond. Both sterically hindered and enantiopure isocyanide complexes have been synthesized. Thimerosal, [(ArCO2)SHgEt]Na, an organomercurial utilized since the 1930s as a topical antiseptic, and more recently as a vaccine preservative, previously was not structurally characterized. Therefore, the molecular structures have been determined for thimerosal, its protonated derivative, (ArCO2H)SHgEt, and its mercurated derivative, [(ArCO2HgEt)SHgEt]2, using single crystal X-ray diffraction. 1H NMR spectroscopic studies indicate that the appearance of the 199Hg mercury satellites of the ethyl groups is highly dependent on the magnetic field and the viscosity of the solvent; this observation is attributed to relaxation caused by chemical shift anisotropy. The relative signs of the Hg-H coupling constants (i.e. 2JHg-H and 3JHg-H) have been determined by virtue of the fact that the inner pair of satellites appears as a singlet at 400 MHz. Reactivity studies involving (ArCO2H)SHgEt provide evidence that the Hg-C bond is kinetically stable with respect to protolytic cleavage. Finally, a series of known dithiol compounds have been synthesized for use as mercury chelating agents.
机译:多齿烷基配体[Tptm]([Tptm] =三(2-吡啶硫基)甲基)为更常见的三脚架配体[Tp]([Tp] =三(吡唑基)氢硼酸盐)和[Tm ]([Tm] =三(2-巯基咪唑基)氢硼酸盐)。已经合成了各种各样的[Tptm]锌络合物,可以进行多种化学计量和催化化学转化,包括H2的产生和CO2的官能化。 [Tptm]配体已用于分离第一个单核烷基氢化锌复合物[!3-Tptm] ZnH。通过三甲基氧化硅配合物[4-Tptm] ZnOSiMe3与PhSiH3的反应,可以很容易地以多克级合成氢化物配合物。氢化物络合物[!3-Tptm] ZnH可提供对多种其他[Tptm] ZnX衍生物的访问。例如,[!3-Tptm] ZnH与(i)R3SiOH(R ​​= Me,Ph)反应得到[!4-Tptm] ZnOSiR3,(ii)Me3SiX(X = Cl,Br,I)得到[! 4-Tptm] ZnX和(iii)CO2生成甲酸盐络合物[!4-Tptm] ZnO2CH。 [!3-Tptm] ZnH水解得到二聚体氢氧化物络合物{[!3-Tptm] Zn(μ–OH)} 2,当用CO2处理时,生成碳酸氢盐络合物[!4-Tptm]氧化锌卤化物络合物[4-Tptm] ZnX(X = Cl,Br,I),可通过用四丁基氟化铵(TBAF)处理来合成氟化物络合物[!4-Tptm] ZnF。直接通过[Tptm] H与[ZnN(SiMe3)2] 2反应制备的双(三甲基甲硅烷基)酰胺络合物[!3-Tptm] ZnN(SiMe3)2与CO2反应生成异氰酸酯络合物,[4-Tptm] ZnNCO。异氰酸酯络合物的形成是由一个多步骤序列导致的,其中第一步是将CO2插入Zn-N(SiMe3)2键中,得到氨基甲酸酯衍生物[Tptm] Zn [O2CN(SiMe3)2],然后是排出Me 3 SiNCO将其重排为[4 -Tptm] ZnOSiMe 3,其进一步反应得到[4 -Tptm] ZnNCO。一个重要的发现是,最终的复分解步骤(生成[4-Tptm] ZnNCO)的速率被CO2提高了。具体而言,将CO2插入[!4-Tptm] ZnOSiMe3的Zn-O键中会生成碳酸盐复合物[!4-Tptm] Zn [O2COSiMe3],与氧化硅衍生物相比,它更易于复分解。 [Tptm]配体还对其他金属(例如镁和镍)有效。镁的[Tptm]配合物显示出与锌相似的化学性质,而直链的亚硝酰基镍络合物[!3-Tptm] NiNO显示出涉及其亚硝酰基配体的多种反应性。例如,[!3-Tptm] NiNO的氧化是可逆的。 [!3-Tptm] NiNO与空气的反应产生顺磁性亚硝酸盐络合物,[!4-Tptm] Ni [!2-O2N],后者可通过与三甲基膦反应而脱氧。另外,已经研究了四齿烷基配体三(1-甲基-咪唑-2-基硫基)甲基[TitmMe],作为与[Tptm]系统的比较。合成了双(三甲基甲硅烷基)酰胺配合物[!3-TitmMe] ZnN(SiMe3)2,它还与CO2反应生成异氰酸酯配合物[!4-TitmMe] ZnNCO。氢氧化物络合物[TpBut,Me] ZnOH([TpBut,Me] =三(3-叔丁基-5-甲基吡唑基)氢硼酸盐)和{[!3-Tptm] Zn(μ–OH)} 2用于模拟与碳酸酐酶作用机理有关的CO2转化。氢氧化物配合物[TpBut,Me] ZnOH的低温1H和13C NMR光谱研究在1个大气压的CO2存在下可以鉴定碳酸氢盐配合物[TpBut,Me] ZnOCO2H。在少于1个大气压的CO2的存在下,可以平衡观察到[TpBut,Me] ZnOH和[TpBut,Me] ZnOCO2H,从而可以测量将CO2插入Zn–OH键的平衡常数。 。在217 K时,平衡常数为6±2“ 103 M–1,对应于#G = –3.8±0.2 kcal mol–1的值。除了溶液状态光谱研究之外,[TpBut,Me] ZnOCO2H X射线衍射对[4-Tptm] ZnOCO2H和[4-Tptm] ZnOCO2H进行了结构表征,从而提供了具有结构特征的末端碳酸氢锌配合物的首个实例。二聚体氢氧化物络合物{[!3-Tptm] Zn(μ–OH)} 2对CO2具有足够的反应性,因此能够直接从空气中提取CO2以形成桥接碳酸盐络合物[Tptm]。 Zn(μ-CO3)Zn [Tptm]。碳酸氢盐和碳酸盐配合物都被硅烷还原,生成甲酸盐衍生物[!4-Tptm] ZnO2CH,这对CO2的功能化具有重要意义。络合物[!3-Tptm] ZnH也被证明是有效的活性强的催化剂,可用于多种转化,包括(i)按需快速生成氢,(ii)醛和酮的氢化硅烷化生成硅氧烷,以及(iii)CO2官能化以生成有用的甲酰化剂,(EtO)3 SiO 2 CH。三甲基氧化硅络合物[4-Tptm] ZnOSiMe3也可以用作这些反应的有效预催化剂。例如,在[4-Tptm] ZnOSiMe3催化的PhSiH3的水解和甲醇分解中,释放了三当量的H2,甲醇分解反应实现105次周转,周转频率超过106 h-1。此外,已经使用三齿[Bptm *]配体合成了[!3-Bptm *] ZnO2CH(Bptm * =双(2-吡啶硫基)(对甲苯硫基)甲基),该配体只有两个螯合的吡啶基臂,禁止α! 4协调。与[Tptm]系统相比,它可作为室温下的CO2氢化硅烷化催化剂,从而使CO2官能化更快。 [!3-Tptm] ZnH和[!3-Bptm *] ZnO2CH提供了催化CO2氢化硅烷化的锌配合物的前两个例子。这些结果提供了证据,证明在合适的配体环境中,廉价且丰富的非过渡金属可以进行通常由含贵金属的化合物催化的反应。 Li [Me 3 SiNR]用于从其羰基前体产生异氰酸酯络合物的用途提供了一种新颖,方便的合成方法,该方法避免了使用游离异氰化物作为试剂。金属异氰酸酯化合物最通常使用游离异氰酸酯合成。相反,过渡金属羰基化合物LnMCO与Li [Me3SiNR]的反应生成相应的异氰化物衍生物LnMCNR。该反应由弱的硅-氮键的裂解驱动,同时形成更强的硅-氧键。位阻和对映纯异氰酸酯复合物均已合成。硫柳汞,[(ArCO2)SHgEt] Na,一种自1930年代以来用作局部防腐剂,最近用作疫苗防腐剂的有机汞,以前在结构上没有特征。因此,已使用单晶X射线衍射确定了硫柳汞,其质子化衍生物(ArCO2H)SHgEt和其汞化衍生物[(ArCO2HgEt)SHgEt] 2的分子结构。 1 H NMR光谱研究表明,乙基的199 Hg汞卫星的出现高度依赖于磁场和溶剂的粘度。该观察结果归因于化学位移各向异性引起的弛豫。 Hg-H耦合常数的相对符号(即2JHg-H和3JHg-H)已根据以下事实确定:内部一对卫星在400 MHz处显示为单峰。涉及(ArCO2H)SHgEt的反应性研究提供了证据,表明Hg-C键相对于蛋白水解裂解在动力学上是稳定的。最后,已经合成了一系列已知的二硫醇化合物用作汞螯合剂。

著录项

  • 作者

    Sattler Wesley Ian;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号