首页> 外文OA文献 >Polymer-Particle Nanocomposites: Size and Dispersion Effects
【2h】

Polymer-Particle Nanocomposites: Size and Dispersion Effects

机译:聚合物颗粒纳米复合材料:尺寸和分散效应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Polymer-particle nanocomposites are used in industrial processes to enhance a broad range of material properties (e.g. mechanical, optical, electrical and gas permeability properties). This dissertation will focus on explanation and quantification of mechanical property improvements upon the addition of nanoparticles to polymeric materials. Nanoparticles, as enhancers of mechanical properties, are ubiquitous in synthetic and natural materials (e.g. automobile tires, packaging, bone), however, to date, there is no thorough understanding of the mechanism of their action. In this dissertation, silica (SiO2) nanoparticles, both bare and grafted with polystyrene (PS), are studied in polymeric matrices. Several variables of interest are considered, including particle dispersion state, particle size, length and density of grafted polymer chains, and volume fraction of SiO2. Polymer grafted nanoparticles behave akin to block copolymers, and this is critically leveraged to systematically vary nanoparticle dispersion and examine its role on the mechanical reinforcement in polymer based nanocomposites in the melt state. Rheology unequivocally shows that reinforcement is maximized by the formation of a transient, but long-lived, percolating polymer-particle network with the particles serving as the network junctions. The effects of dispersion and weight fraction of filler on nanocomposite mechanical properties are also studied in a bare particle system. Due to the interest in directional properties for many different materials, different means of inducing directional ordering of particle structures are also studied. Using a combination of electron microscopy and x-ray scattering, it is shown that shearing anisotropic NP assemblies (sheets or strings) causes them to orient, one in front of the other, into macroscopic two-dimensional structures along the flow direction. In contrast, no such flow-induced ordering occurs for well dispersed NPs or spherical NP aggregates! This work also addresses the interfacial, rigid polymer layer, or `bound layer' which has long been of interest in polymer nanocomposites and polymer thin films. The divergent properties of the `bound layer' as compared to the bulk material can have very important effects on properties, including mechanical properties. This is especially true in polymer nanocomposites, where at high weight fractions, `bound layer' polymer can easily make up 20% or more of total material! Here we quantify this layer of bound polymer as a function of particle size, polymer molecular weight and other variables, primarily using thermogravimetric analysis but also dynamic light scattering and differential scanning calorimetry. We find that as nanoparticles become smaller, the `bound layer' systematically decreases in thickness. This result is quite relevant to explanations of many polymer nanocomposite properties that depend on size, including mechanical and barrier properties. Many additional important and new results are reported herein. These include the importance of dispersion state in the resulting mechanical properties of polymer-particle nanocomposites, where a systematic study showed an optimal dispersion state of a connected particle network. An additional and unexpected finding in this system was the critical dependence of composite properties on grafted chain length of particles. As the grafted chain length is increased, the strain which leads to yielding in a steady shear experiment is increased in a linear relationship. At very high rates, this yielding process completely switches mechanisms, from yielding of the particle network to yielding of the entangled polymer network! A surprising correlation between the amount of bound polymer in solution and in the bulk was also found and is interpreted herein. Self-assembly was further explored in a range of different systems and it was found that grafted particles and there mimics have vast potential in the creation of a wide array of particle superstructures. In concert, these experiments provide a comprehensive picture of mechanical reinforcement in polymer-particle nanocomposites. Not only is the dispersion state of the particles crucial, but the presence of grafted chains is also so for proper reinforcement. Here many routes to ideal dispersion are detailed and the important role of grafted chains is also resolved.
机译:聚合物颗粒纳米复合材料用于工业过程中以增强广泛的材料性能(例如机械,光学,电和气体渗透性)。本论文将集中在对聚合物材料中添加纳米粒子后机械性能改善的解释和量化。纳米颗粒作为机械性能的增强剂,在合成和天然材料(例如汽车轮胎,包装,骨头)中无处不在,然而,迄今为止,尚未对其作用机理有透彻的了解。本文研究了在聚合物基体中裸露和接枝聚苯乙烯(PS)的二氧化硅(SiO2)纳米粒子。考虑了几个令人关注的变量,包括颗粒分散状态,粒径,接枝聚合物链的长度和密度以及SiO2的体积分数。接枝聚合物的纳米颗粒的行为类似于嵌段共聚物,并且这对于系统地改变纳米颗粒的分散性并检测其在熔融状态下基于聚合物的纳米复合材料中的机械增强作用至关重要。流变学明确地表明,通过形成一个短暂但寿命长的渗滤聚合物-颗粒网络,并以该颗粒作为网络结,渗碳得以最大化。在裸粒子系统中,还研究了填料的分散度和重量分数对纳米复合材料力学性能的影响。由于对许多不同材料的定向特性感兴趣,因此还研究了诱导粒子结构定向有序化的不同方法。结合使用电子显微镜和X射线散射,结果表明,剪切各向异性的NP组件(片或线)会使它们沿流动方向一个接一个地定向为宏观的二维结构。相反,对于良好分散的NP或球形NP聚集体,不会发生这种由流动引起的排序!这项工作还解决了界面,刚性聚合物层或“粘结层”的问题,这在聚合物纳米复合材料和聚合物薄膜中一直很受关注。与块状材料相比,“结合层”的不同特性会对包括机械特性在内的特性产生非常重要的影响。在聚合物纳米复合材料中尤其如此,在高重量分数下,“粘结层”聚合物可以轻松构成总材料的20%或更多!在这里,我们主要根据热重分析以及动态光散射和差示扫描量热法,将结合的聚合物层作为粒径,聚合物分子量和其他变量的函数进行量化。我们发现,随着纳米粒子的变小,“结合层”的厚度会系统地减小。该结果与许多取决于尺寸的聚合物纳米复合材料性能的解释非常相关,包括机械性能和阻隔性能。本文报道了许多其他重要和新的结果。这些包括分散状态在聚合物颗粒纳米复合材料的最终机械性能中的重要性,其中系统的研究显示了连接的颗粒网络的最佳分散状态。该系统的另一个意外发现是复合材料性能对颗粒接枝链长度的关键依赖性。随着接枝链长度的增加,在稳态剪切实验中导致屈服的应变呈线性关系增加。在非常高的速率下,这种屈服过程会完全切换机制,从粒子网络的屈服到纠缠的聚合物网络的屈服!还发现溶液中和本体中结合的聚合物的量之间令人惊讶的相关性,并在本文中进行解释。在一系列不同的系统中进一步研究了自组装,发现接枝的颗粒及其模拟物在创建各种各样的颗粒超结构方面具有巨大的潜力。一致地,这些实验提供了聚合物颗粒纳米复合材料中机械增强的全面描述。不仅颗粒的分散状态至关重要,而且接枝链的存在对于适当增强也是如此。这里详细介绍了实现理想分散的许多途径,还解决了接枝链的重要作用。

著录项

  • 作者

    Moll Joseph Francis;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号