首页> 外文OA文献 >An Innovative Approach for Updating Soil Information Based on Digital Soil Mapping Techniques
【2h】

An Innovative Approach for Updating Soil Information Based on Digital Soil Mapping Techniques

机译:基于数字土壤制图技术的土壤信息更新方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In most part of the world the information on the thematic soil maps (soil erosion, soil degradation, soil organic matter content etc.) are developed as a tool for policy and management support. This information are typically derived through expert interpretation or empirical modeling approaches using typically decades old soil information originating from field investigation, laboratory analysis, reports etc. In recent period, there is a strong emphasis to update the existing soil information in a cost-effective and accurate manner. The advancements in the emerging Geographical Information System (GIS) and digital soil mapping techniques are found to be supportive enough to derive tools addressing the above mentioned problem. In this study, we propose a novel innovative approach to address the issues on evaluating the traditional soil maps and updating the existing soil information based on the principles of digital soil mapping i.e. deriving objective soil information by reformulating the relationships between soil and its environment using ancillary and minimal datasets. The new approach is called as “SEIMS network” (Soil and Environment Interaction based Mapping System). The SEIMS network is a Data Mining and Knowledge Discovery (KDD) based method derived by fusing GIS, DSM techniques along with working principle of the DRIS approach. This approach provides a scheme to transform and update the less detailed, discrete and subjectively derived soil information into a continuous, non-subjective and quantitative spatial datasets. The study was tested on the soil erosion map of Tamil Nadu region, southern part of Indian Peninsula. The SEIMS network attempts to reformulate the soil erosion map of Tamil Nadu region and redefine the contours by spreading back the knowledge acquired from the relationship among the soil and its environmental variables used as predictors in the system. The variables like temperature, rainfall, potential evapotranspiration, rainfall seasonality, land cover percentage (derived from MODIS spectral bands), soil crusting, soil erodibility, top soil organic carbon content, altitude and slope that are having major influence on soil erosion were chosen as predictors for characterizing the relationship among the variables on the context of soil erosion process. The test on the efficiency of the SEIMS network’s capability to extrapolate and derive the target soil information using the weights derived from the ancillary datasets was performed over established soil erosion map of Europe. The erosion index value derived through SEIMS network scheme exhibited a better correlation with PESERA soil erosion estimates (r2 = 0.81), thereby proving its ability to mimic and characterize the soil erosion process by studying the complex interrelationship among the environmental variables. The weights derived for prediction are mathematically unique, thereby holds scope for further elaboration on its application to derive a tool, addressing the upscaling and downscaling issues in digital soil mapping. The flexibility and reproducibility are the main advantages visualized for this approach. Moreover, the results are objective and easy for interpretation. This study demonstrated that the SEIMS network as a promising tool in digital soil mapping to evaluate and update the existing soil information with minimal ancillary datasets.
机译:在世界大部分地区,主题土壤图上的信息(土壤侵蚀,土壤退化,土壤有机质含量等)被开发为政策和管理支持的工具。这些信息通常是通过专家解释或经验建模方法得出的,这些方法通常使用源自田野调查,实验室分析,报告等的数十年之久的土壤信息。在最近一段时间,人们非常重视以经济有效的方式更新现有的土壤信息。准确的方式。人们发现,新兴的地理信息系统(GIS)和数字土壤制图技术的进步足以支持人们获得解决上述问题的工具。在这项研究中,我们提出了一种新颖的创新方法,以解决基于数字土壤制图原理评估传统土壤图和更新现有土壤信息的问题,即通过使用辅助方法重新构造土壤与环境之间的关系来得出客观的土壤信息。和最少的数据集。这种新方法称为“ SEIMS网络”(基于土壤与环境相互作用的制图系统)。 SEIMS网络是通过将GIS,DSM技术以及DRIS方法的工作原理融合而得出的基于数据挖掘和知识发现(KDD)的方法。这种方法提供了一种方案,可以将较不详细,离散和主观得出的土壤信息转换和更新为连续的,非主观的和定量的空间数据集。该研究在印度半岛南部泰米尔纳德邦的土壤侵蚀图上进行了测试。 SEIMS网络试图通过重新散布从土壤与环境变量之间的关系中获得的知识(系统中用作预测因子),来重新构造泰米尔纳德邦地区的土壤侵蚀图,并重新定义等高线。选择了对土壤侵蚀有重要影响的变量,如温度,降雨,潜在的蒸散量,降雨的季节性,土地覆盖率(来自MODIS光谱带),土壤结皮,土壤易蚀性,顶部土壤有机碳含量,海拔和坡度。表征土壤侵蚀过程中变量之间关系的预测器。在欧洲已建立的土壤侵蚀地图上,对SEIMS网络利用来自辅助数据集的权重推断和得出目标土壤信息的能力的效率进行了测试。通过SEIMS网络方案得出的侵蚀指数值与PESERA土壤侵蚀估计值具有更好的相关性(r2 = 0.81),从而通过研究环境变量之间的复杂相互关系证明了其模仿和表征土壤侵蚀过程的能力。用于预测的权重在数学上是唯一的,从而为进一步阐述其在应用工具上的应用提供了空间,该工具解决了数字土壤制图中的放大和缩小问题。灵活性和可重复性是此方法可视化的主要优点。而且,结果是客观的并且易于解释。这项研究表明,SEIMS网络可作为数字土壤制图的有前途的工具,以最少的辅助数据集评估和更新现有的土壤信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号