The fraction of photosynthetically active radiation (FAPAR) is an important parameter in climate and carbon cycle studies. In this paper, we use the Earth Observation Land Data Assimilation System (EO-LDAS) framework to retrieve FAPAR from observations of directional surface reflectance measurements from the Multi-angle Imaging SpectroRadiometer (MISR) instrument. The procedure works by interpreting the reflectance data via the semi-discrete radiative transfer (RT) model, supported by a prior parameter distribution and a dynamic regularisation model, and resulting in an inference of land surface parameters, such as effective leaf area index (LAI), leaf chlorophyll concentration and fraction of senescent leaves, with full uncertainty quantification. The method is demonstrated over three agricultural FLUXNET sites, and the EO-LDAS results are compared with 8 years of in situ measurements of FAPAR and LAI, resulting in a total of 24 site years. We additionally compare three other widely used EO FAPAR products, namely the MEdium Resolution Imaging Spectrometer (MERIS) Full Resolution, theMISR High Resolution (HR) Joint Research Centre Two-stream Inversion Package (JRC-TIP) and MODIS MCD15 FAPAR products. The EO-LDAS MISR FAPAR retrievals show a high correlation with the ground measurements (r2>0.8), as well as the lowest average RMSE (0.14), in line with the MODIS product. As the EO-LDAS solution is effectively interpolated, if only measurements that are coincident with MISR observations are considered, the correlation increases (r2>0.85), the RMSE is lower by 4-5%, and the bias is 2 and 7%. The EO-LDAS MISR LAI estimates show a strong correlation with ground based LAI (average r2=0.76), but an underestimate of LAI for optically thick canopies due to saturation (average RMSE=2.23). These results suggest that the EO-LDAS approach is successful in retrieving both FAPAR and other land surface parameters. A large part of this success is based on the use of a dynamic regularisation model that counteracts the poor temporal sampling from the MISR instrument.
展开▼
机译:光合有效辐射的比例(FAPAR)是气候和碳循环研究中的重要参数。在本文中,我们使用地球观测土地数据同化系统(EO-LDAS)框架从多角度成像光谱辐射仪(MISR)仪器的定向表面反射率测量结果中检索FAPAR。该程序的工作原理是通过半离散辐射传输(RT)模型解释反射率数据,该模型由先验参数分布和动态正则化模型支持,并推断出地表参数,例如有效叶面积指数(LAI) ),叶片叶绿素浓度和衰老叶片的分数,并具有完全不确定性量化。该方法在三个农业FLUXNET站点上得到了证明,并将EO-LDAS结果与FAPAR和LAI的8年现场测量结果进行了比较,总共有24个站点年。我们还比较了其他三种广泛使用的EO FAPAR产品,即中等分辨率成像光谱仪(MERIS)全分辨率,MISR高分辨率(HR)联合研究中心两流反吹软件包(JRC-TIP)和MODIS MCD15 FAPAR产品。 EO-LDAS MISR FAPAR检索结果与地面测量值高度相关(r2> 0.8),最低平均RMSE(0.14)与MODIS产品一致。由于对EO-LDAS解决方案进行了有效插值,因此,如果仅考虑与MISR观测值一致的测量,则相关性会增加(r2> 0.85),RMSE降低4-5%,偏差为2和7%。 EO-LDAS MISR LAI估计值与基于地面的LAI密切相关(平均r2 = 0.76),但由于饱和度导致光学厚的冠层的LAI估计值偏低(平均RMSE = 2.23)。这些结果表明,EO-LDAS方法可成功检索FAPAR和其他地面参数。这种成功的很大一部分是基于使用动态正则化模型来抵消来自MISR仪器的不良时间采样。
展开▼