首页> 外文OA文献 >The Influence of Fibre Processing and Treatments on Hemp Fibre/Epoxy and Hemp Fibre/PLA Composites
【2h】

The Influence of Fibre Processing and Treatments on Hemp Fibre/Epoxy and Hemp Fibre/PLA Composites

机译:纤维加工和处理对大麻纤维/环氧树脂和大麻纤维/ PLA复合材料的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, due to growing environmental awareness, considerable attention has beengiven to the development and production of natural fibre reinforced polymer (boththermoset and thermoplastic) composites. The main objective of this study was toreinforce epoxy and polylactic acid (PLA) with hemp fibre to produce improvedcomposites by optimising the fibre treatment methods, composite processing methods,and fibre/matrix interfacial bonding.An investigation was conducted to obtain a suitable fibre alkali treatment method to:(i) remove non-cellulosic fibre components such as lignin (sensitive to ultra violet(UV) radiation) and hemicelluloses (sensitive to moisture) to improve long termcomposites stability(ii) roughen fibre surface to obtain mechanical interlocking with matrices(iii)expose cellulose hydroxyl groups to obtain hydrogen and covalent bonding withmatrices(iv) separate the fibres from their fibre bundles to make the fibre surface available forbonding with matrices(v) retain tensile strength by keeping fibre damage to a minimum level and(vi) increase crystalline cellulose by better packing of cellulose chains to enhance thethermal stability of the fibres.An empirical model was developed for fibre tensile strength (TS) obtained with differenttreatment conditions (different sodium hydroxide (NaOH) and sodium sulphite (Na2SO3)concentrations, treatment temperatures, and digestion times) by a partial factorial design.Upon analysis of the alkali fibre treatments by single fibre tensile testing (SFTT),scanning electron microscopy (SEM), zeta potential measurements, differential thermalanalysis/thermogravimetric analysis (DTA/TGA), wide angle X-ray diffraction(WAXRD), lignin analysis and Fourier transform infrared (FTIR) spectroscopy, atreatment consisting of 5 wt% NaOH and 2 wt% Na2SO3 concentrations, with a treatment temperature of 120oC and a digestion time of 60 minutes, was found to give the bestcombination of the required properties. This alkali treatment produced fibres with anaverage TS and Young's modulus (YM) of 463 MPa and 33 GPa respectively. The fibresobtained with the optimised alkali treatment were further treated with acetic anhydrideand phenyltrimethoxy silane. However, acetylated and silane treated fibres were notfound to give overall performance improvement.Cure kinetics of the neat epoxy (NE) and 40 wt% untreated fibre/epoxy (UTFE)composites were studied and it was found that the addition of fibres into epoxy resinincreased the reaction rate and decreased the curing time. An increase in the nucleophilicactivity of the amine groups in the presence of fibres is believed to have increased thereaction rate of the fibre/epoxy resin system and hence reduced the activation energiescompared to NE.The highest interfacial shear strength (IFSS) value for alkali treated fibre/epoxy (ATFE)samples was 5.2 MPa which was larger than the highest value of 2.7 MPa for UTFEsamples supporting that there was a stronger interface between alkali treated fibre andepoxy resin. The best fibre/epoxy bonding was found for an epoxy to curing agent ratio of1:1 (E1C1) followed by epoxy to curing agent ratios of 1:1.2 (E1C1.2), 1: 0.8 (E1C0.8), andfinally for 1:0.6 (E1C0.6).Long and short fibre reinforced epoxy composites were produced with various processingconditions using vacuum bag and compression moulding. A 65 wt% untreated longfibre/epoxy (UTLFE) composite produced by compression moulding at 70oC with a TS of165 MPa, YM of 17 GPa, flexural strength of 180 MPa, flexural modulus of 10.1 GPa,impact energy (IE) of 14.5 kJ/m2, and fracture toughness (KIc) of 5 MPa.m1/2 was found tobe the best in contrast to the trend of increased IFSS for ATFE samples. This isconsidered to be due to stress concentration as a result of increased fibre/fibre contactwith the increased fibre content in the ATFE composites compared to the UTFEcomposites.Hygrothermal ageing of 65 wt% untreated and alkali treated long and short fibre/epoxycomposites (produced by curing at 70oC) showed that long fibre/epoxy composites weremore resistant than short fibre/epoxy composites and ATFE composites were moreresistant than UTFE composites towards hygrothermal ageing environments as revealed from diffusion coefficients and tensile, flexural, impact, fracture toughness, SEM, TGA,and WAXRD test results. Accelerated ageing of 65 wt% UTLFE and alkali treated longfibre/epoxy (ATLFE) composites (produced by curing at 70oC) showed that ATLFEcomposites were more resistant than UTLFE composites towards hygrothermal ageingenvironments as revealed from tensile, flexural, impact, KIc, SEM, TGA, WAXRD, FTIRtest results.IFSS obtained with untreated fibre/PLA (UFPLA) and alkali treated fibre/PLA (ATPLA)samples showed that ATPLA samples had greater IFSS than that of UFPLA samples. Theincrease in the formation of hydrogen bonding and mechanical interlocking of the alkalitreated fibres with PLA could be responsible for the increased IFSS for ATPLA systemcompared to UFPLA system.Long and short fibre reinforced PLA composites were also produced with variousprocessing conditions using compression moulding. A 32 wt% alkali treated long fibrePLA composite produced by film stacking with a TS of 83 MPa, YM of 11 GPa, flexuralstrength of 143 MPa, flexural modulus of 6.5 GPa, IE of 9 kJ/m2, and KIc of 3 MPa.m1/2was found to be the best. This could be due to the better bonding of the alkali treatedfibres with PLA. The mechanical properties of this composite have been found to be thebest compared to the available literature.Hygrothermal and accelerated ageing of 32 wt% untreated and alkali treated longfibre/PLA composites ATPLA composites were more resistant than UFPLA compositestowards hygrothermal and accelerated ageing environments as revealed from diffusioncoefficients and tensile, flexural, impact, KIc, SEM, differential scanning calorimetry(DSC), WAXRD, and FTIR results. Increased potential hydrogen bond formation andmechanical interlocking of the alkali treated fibres with PLA could be responsible for theincreased resistance of the ATPLA composites.Based on the present study, it can be said that the performance of natural fibre compositeslargely depend on fibre properties (e.g. length and orientation), matrix properties (e.g.cure kinetics and crystallinity), fibre treatment and processing methods, and compositeprocessing methods.
机译:近年来,由于环保意识的增强,人们对天然纤维增强聚合物(热固性和热塑性)复合材料的开发和生产给予了极大的关注。这项研究的主要目的是通过优化纤维处理方法,复合加工方法以及纤维/基体界面结合力,用大麻纤维增强环氧和聚乳酸(PLA)来生产改良的复合材料。 (i)去除木质素(对紫外线(UV)敏感)和半纤维素(对湿气敏感)等非纤维素纤维成分,以提高长期复合材料的稳定性(ii)使纤维表面变粗糙,以获得与基质的机械互锁( iii)暴露纤维素羟基以获得氢和与基体的共价键合(iv)将纤维与其纤维束分开,以使纤维表面可与基体键合(v)通过将纤维损伤保持在最低水平来保持拉伸强度和(vi)通过更好地堆积纤维素链来增加结晶纤维素,以增强纤维的热稳定性。通过部分因子设计,选择了在不同处理条件(不同的氢氧化钠(NaOH)和亚硫酸钠(Na2SO3)浓度,处理温度和消化时间)下获得的纤维抗张强度(TS)。拉伸测试(SFTT),扫描电子显微镜(SEM),ζ电位测量,差热分析/热重分析(DTA / TGA),广角X射线衍射(WAXRD),木质素分析和傅立叶变换红外(FTIR)光谱,处理发现由5 wt%的NaOH和2 wt%的Na2SO3组成,处理温度为120oC,消解时间为60分钟,可以提供所需性能的最佳组合。该碱处理产生的纤维的平均TS和杨氏模量(YM)分别为463 MPa和33 GPa。通过优化的碱处理获得的纤维进一步用乙酸酐和苯基三甲氧基硅烷进行处理。然而,未发现乙酰化和硅烷处理的纤维能改善整体性能。研究了纯环氧树脂(NE)和40 wt%未经处理的纤维/环氧(UTFE)复合材料的固化动力学,发现增加了纤维在环氧树脂中的添加量反应速率降低了固化时间。认为在纤维存在下胺基团的亲核活性增加会增加纤维/环氧树脂体系的反应速率,因此与NE相比降低活化能。碱处理纤维的最高界面剪切强度(IFSS)值/环氧树脂(ATFE)样品为5.2 MPa,大于UTFE样品的最高2.7 MPa,这表明碱处理的纤维与环氧树脂之间的界面更牢固。环氧/固化剂的比例为1:1(E1C1)时发现了最佳的纤维/环氧键接,环氧与固化剂的比例为1:1.2(E1C1.2),1:0.8(E1C0.8)和最后1 :0.6(E1C0.6)。长短纤维增强环氧复合材料是在各种加工条件下使用真空袋和压缩成型生产的。 65%的未处理长纤维/环氧树脂(UTLFE)复合材料,在70oC下通过压缩成型生产,TS为165 MPa,YM为17 GPa,弯曲强度为180 MPa,弯曲模量为10.1 GPa,冲击能量(IE)为14.5 kJ /与ATFE样品的IFSS增加趋势相反,发现m2和5 MPa.m1 / 2的断裂韧性(KIc)最好。认为这是由于与UTFE复合材料相比,纤维/纤维接触的增加以及ATFE复合材料中纤维含量的增加而引起的应力集中。未经处理和经碱处理的长纤维和短纤维/环氧复合材料的湿热老化为65 wt%(通过固化产生)在70°C时)表明,长纤维/环氧树脂复合材料比短纤维/环氧树脂复合材料更耐湿,而ATFE复合材料在湿热老化环境方面比UTFE复合材料更耐,如扩散系数和拉伸,挠曲,冲击,断裂韧性,SEM,TGA和WAXRD测试结果。 65%(重量)UTLFE和碱处理的长纤维/环氧树脂(ATLFE)复合材料(在70oC下固化产生)的加速老化表明,从拉伸,弯曲,冲击,KIc,SEM,TGA可以看出,ATLFE复合材料比UTLFE复合材料更耐湿热老化环境,WAXRDFTIRtest结果。未处理的纤维/ PLA(UFPLA)和碱处理的纤维/ PLA(ATPLA)样品获得的IFSS显示,ATPLA样品的IFSS比UFPLA样品大。与UFPLA体系相比,碱处理纤维与PLA的氢键形成和机械互锁的增加可能是导致ATPLA体系的IFSS增加的原因。长短纤维增强的PLA复合材料还可以在不同的工艺条件下使用压模法生产。 32%的碱处理长纤维PLA复合材料,通过薄膜堆叠法制得,其TS值为83 MPa,YM为11 GPa,弯曲强度为143 MPa,弯曲模量为6.5 GPa,IE为9 kJ / m2,KIc为3 MPa.m1 / 2被认为是最好的。这可能是由于碱处理过的纤维与PLA的粘合更好。与现有文献相比,该复合材料的机械性能最佳。湿热和加速老化的32%未处理和碱处理的长纤维/ PLA复合材料ATPLA复合材料比UFPLA复合材料更耐湿热和加速老化的环境扩散系数和拉伸,挠曲,冲击,KIc,SEM,差示扫描量热法(DSC),WAXRD和FTIR结果。碱处理后的纤维与PLA的潜在氢键形成增加和机械互锁可能是ATPLA复合材料耐力增加的原因。在本研究的基础上,可以说天然纤维复合材料的性能在很大程度上取决于纤维性能(例如长度和取向),基体性质(固化动力学和结晶度),纤维处理和加工方法以及复合加工方法。

著录项

  • 作者

    Islam Mohammad Saiful;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号