首页> 外文OA文献 >Lower and Upper Bounds for the Largest Lyapunov Exponent of Matrices
【2h】

Lower and Upper Bounds for the Largest Lyapunov Exponent of Matrices

机译:矩阵的最大Lyapunov指数的上下界

摘要

We introduce a new approach to evaluate the largest Lyapunov exponent of a family of nonnegative matrices. The method is based on using special positive homogeneous functionals on View the MathML source, which gives iterative lower and upper bounds for the Lyapunov exponent. They improve previously known bounds and converge to the real value. The rate of convergence is estimated and the efficiency of the algorithm is demonstrated on several problems from applications (in functional analysis, combinatorics, and language theory) and on numerical examples with randomly generated matrices. The method computes the Lyapunov exponent with a prescribed accuracy in relatively high dimensions (up to 60). We generalize this approach to all matrices, not necessarily nonnegative, derive a new universal upper bound for the Lyapunov exponent, and show that a potential similar lower bound does not exist in general.
机译:我们引入了一种新的方法来评估非负矩阵族的最大Lyapunov指数。该方法基于在View MathML源上使用特殊的正齐次泛函,从而为Lyapunov指数提供了迭代的上下限。它们改善了先前已知的界限,并收敛到实际价值。在应用程序的一些问题(功能分析,组合语言学和语言理论)以及带有随机生成矩阵的数值示例中,对收敛速度进行了估计,并证明了算法的效率。该方法以相对较高的尺寸(最多60个)以规定的精度计算Lyapunov指数。我们将这种方法推广到所有矩阵(不一定非负),得出Lyapunov指数的新通用上界,并表明通常不存在潜在的相似下界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号