首页> 外文OA文献 >Quantification of frequency domain error bounds with guaranteed confidence level in prediction error identification
【2h】

Quantification of frequency domain error bounds with guaranteed confidence level in prediction error identification

机译:预测误差识别中具有可信度保证的频域误差范围的量化

摘要

This paper considers prediction error identification of linearly parametrized models in the situation where the system is in the model set. For such situation it is easy to construct a confidence ellipsoid in parameter space in which the true parameter lies with an a priori fixed probability level, alpha. Surprisingly perhaps, the construction of a corresponding uncertainty set in the frequency domain, to which the true system belongs with probability alpha, is still an open problem. We show in this paper how to construct such frequency domain uncertainty set with a probability level of at least alpha. (c) 2004 Elsevier B.V. All rights reserved.
机译:本文考虑了系统处于模型集中的情况下线性参数化模型的预测误差识别。对于这种情况,很容易在参数空间中构造置信椭圆体,其中真实参数位于先验的固定概率水平α中。出乎意料的是,在频域中构造相应系统的不确定性仍然是一个悬而未决的问题。我们在本文中展示了如何构建概率水平至少为α的频域不确定性集。 (c)2004 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号