首页> 外文OA文献 >Breast density classification to reduce false positives in CADe systems
【2h】

Breast density classification to reduce false positives in CADe systems

机译:乳房密度分类可减少CADe系统中的误报

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

[Abstract] This paper describes a novel weighted voting tree classification scheme for breast density classification. Breast parenchymal density is an important risk factor in breast cancer. Moreover, it is known that mammogram interpretation is more difficult when dense tissue is involved. Therefore, automated breast density classification may aid in breast lesion detection and analysis. Several classification methods have been compared and a novel hierarchical classification procedure of combined classifiers with linear discriminant analysis (LDA) is proposed as the best solution to classify the mammograms into the four BIRADS tissue classes. The classification scheme is based on 298 texture features. Statistical analysis to test the normality and homoscedasticity of the data was carried out for feature selection. Thus, only features that are influenced by the tissue type were considered. The novel classification techniques have been incorporated into a CADe system to drive the detection algorithms and tested with 1459 images. The results obtained on the 322 screen-film mammograms (SFM) of the mini-MIAS dataset show that 99.75% of samples were correctly classified. On the 1137 full-field digital mammograms (FFDM) dataset results show 91.58% agreement. The results of the lesion detection algorithms were obtained from modules integrated within the CADe system developed by the authors and show that using breast tissue classification prior to lesion detection leads to an improvement of the detection results. The tools enhance the detectability of lesions and they are able to distinguish their local attenuation without local tissue density constraints.
机译:[摘要]本文介绍了一种用于乳腺密度分类的新型加权投票树分类方案。乳房实质密度是乳腺癌的重要危险因素。此外,已知当涉及致密组织时,乳房X线照片的解释更加困难。因此,自动乳房密度分类可有助于乳房病变的检测和分析。比较了几种分类方法,提出了一种新的组合分类器与线性判别分析(LDA)的分层分类程序,作为将乳房X线照片分类为四个BIRADS组织类别的最佳解决方案。分类方案基于298个纹理特征。进行统计分析以测试数据的正态性和均方差性,以进行特征选择。因此,仅考虑受组织类型影响的特征。新颖的分类技术已被集成到CADe系统中,以驱动检测算法并用1459张图像进行了测试。在mini-MIAS数据集的322个屏幕胶片X线照片(SFM)上获得的结果表明,正确分类的样本为99.75%。在1137个全场数字化乳腺X线照片(FFDM)数据集上,结果显示符合91.58%。病变检测算法的结果是从作者开发的CADe系统中集成的模块中获得的,结果表明,在病变检测之前使用乳腺组织分类可以改善检测结果。这些工具增强了病变的可检测性,并且能够在没有局部组织密度约束的情况下区分其局部衰减。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号