首页> 外文OA文献 >Compulsory Flow Q-Learning: an RL algorithm for robot navigation based on partial-policy and macro-states
【2h】

Compulsory Flow Q-Learning: an RL algorithm for robot navigation based on partial-policy and macro-states

机译:强制流Q学习:一种基于局部策略和宏观状态的RL机器人导航算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Reinforcement Learning is carried out on-line, through trial-and-error interactions of the agent with the environment, which can be very time consuming when considering robots. In this paper we contribute a new learning algorithm, CFQ-Learning, which uses macro-states, a low-resolution discretisation of the state space, and a partial-policy to get around obstacles, both of them based on the complexity of the environment structure. The use of macro-states avoids convergence of algorithms, but can accelerate the learning process. In the other hand, partial-policies can guarantee that an agent fulfils its task, even through macro-state. Experiments show that the CFQ-Learning performs a good balance between policy quality and learning rate.
机译:增强学习是通过代理与环境的反复试验在线进行的,这在考虑使用机器人时可能非常耗时。在本文中,我们提出了一种新的学习算法CFQ-Learning,该算法使用宏状态,状态空间的低分辨率离散化以及部分策略来绕过障碍,这两种障碍都是基于环境的复杂性结构体。宏状态的使用避免了算法的收敛,但可以加速学习过程。另一方面,局部策略可以保证代理即使通过宏观状态也能完成其任务。实验表明,CFQ-Learning在政策质量和学习率之间取得了很好的平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号