首页> 外文OA文献 >Large-Scale Simulations of Error-Prone Quantum Computation Devices
【2h】

Large-Scale Simulations of Error-Prone Quantum Computation Devices

机译:误码量子计算装置的大规模仿真

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The theoretical concepts of quantum computation in the idealized and undisturbed case are well understood. However, in practice, all quantum computation devices do suffer from decoherence effects as well as from operational imprecisions.This work assesses the power of error-prone quantum computation devices using largescalenumerical simulations on parallel supercomputers. We present the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that simulates a generic quantum computer on gate level. It comprises an error model for decoherence and operational errors. The robustness of various algorithms in the presence of noise has been analyzed.The simulation results show that for large system sizes and long computations it is imperative to actively correct errors by means of quantum error correction. We implemented the 5-, 7-, and 9-qubit quantum error correction codes. Our simulations confirm that using error-prone correction circuits with non-fault-tolerant quantum error correction will always fail, because more errors are introduced than being corrected. Fault-tolerant methods canovercome this problem, provided that the single qubit error rate is below a certain threshold.We incorporated fault-tolerant quantum error correction techniques into JUMPIQCS usingSteane’s 7-qubit code and determined this threshold numerically. Using the depolarizingchannel as the source of decoherence, we find a threshold error rate of (5.2 ± 0.2) · 10−6.For Gaussian distributed operational over-rotations the threshold lies at a standard deviation of 0.0431±0.0002. We can conclude that quantum error correction is especially well suited for the correction of operational imprecisions and systematic over-rotations.For realistic simulations of specific quantum computation devices we need to extend the generic model to dynamic simulations, i.e. time-dependent Hamiltonian simulations of realistic hardware models. We focus on today’s most advanced technology, i.e. ion trap quantum computation. We developed the Dynamic Quantum Computer Simulator for Ion Traps (DyQCSI). Starting from a microscopic Hamiltonian, it does not rely on approximations that are usually necessary for an analytical approach. We show that the effects due to theseapproximations are significant. We present several ways for the visualization of the state of the system during its time evolution and demonstrated the benefit of the simulation approach for parameter optimizations.
机译:在理想化和不受干扰的情况下,量子计算的理论概念已广为人知。但是,实际上,所有量子计算设备的确会受到去相干效应以及操作不精确性的影响。这项工作使用并行超级计算机上的大规模数值模拟来评估容易出错的量子计算设备的功能。我们介绍了Juelich大规模并行理想量子计算机模拟器(JUMPIQCS),该模拟器在门级模拟了通用量子计算机。它包括用于相干和操作错误的错误模型。分析了各种算法在噪声存在下的鲁棒性。仿真结果表明,对于大系统规模和长计算量,必须通过量子误差校正来主动校正误差。我们实现了5位,7位和9位量子纠错码。我们的仿真证实,将容易出错的校正电路与非容错量子错误校正一起使用总是会失败,因为引入的错误要比被校正的错误多。只要单个qubit错误率低于某个阈值,容错方法就可以克服这个问题。我们使用Steane的7比特代码将容错量子纠错技术结合到JUMPIQCS中,并通过数字确定该阈值。使用去极化通道作为去相干的源,我们发现阈值错误率(5.2±0.2)·10−6。对于高斯分布的操作过旋转,阈值位于0.0431±0.0002的标准偏差下。我们可以得出结论,量子误差校正特别适合纠正操作误差和系统过旋转。对于特定量子计算设备的逼真的模拟,我们需要将通用模型扩展到动态仿真,即,与时间相关的哈密顿仿真硬件模型。我们专注于当今最先进的技术,即离子阱量子计算。我们开发了用于离子阱的动态量子计算机模拟器(DyQCSI)。从微观哈密顿量开始,它不依赖于解析方法通常必需的近似值。我们表明,由于这些近似而产生的影响是显着的。我们提出了几种在时间演变过程中可视化系统状态的方法,并展示了仿真方法对参数优化的好处。

著录项

  • 作者

    Trieu D. B.;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号