首页> 外文OA文献 >An extension of penalized ordinal response models
【2h】

An extension of penalized ordinal response models

机译:惩罚性顺序反应模型的扩展

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ordinal responses are commonly seen in medical research. Many pathological evaluations and health status outcomes are reported on an ordinal scales. Some examples of ordinal outcomes include cancer stage (I, II, III and IV), or stage of liver disease (normal liver, chronic hepatitis, cirrhosis and end of stage liver disease or hepatocellular carcinoma (HCC)).In recent years, there has been a demand to understanding the pathogenic association between ordinal clinical outcomes and molecular characteristics. Genomic characteristics are often assayed using a high-dimensional platform where the number of interrogated sites (P) exceeds the number of samples (n). Unfortunately, traditional ordinal response models often do not perform well when the number of parameter (P) exceed the number of observations (n). A good solution to this problem is penalization, for example, least absolute shrinkage and selection operator (LASSO). Here, we extend a LASSO method, the generalized monotone incremental forward stagewise algorithm (GMIFS) method, to ordinal response models. Specifically, this research details the extension of the GMIFS method to probit link ordinal response models and the stereotype logit model.Moreover, motivated by the Bayesian LASSO proposed by Park and Casella (2008), we developed an ordinal response model that incorporates a penalty term so that both feature selection and outcome prediction are achievable. The ordinal response model we are focusing on is the cumulative logit model, and the performance will be compared with the frequentist LASSO cumulative logit model (GMIFS).In addition to GMIFS and penalized Bayesian cumulative logit model, this research also addresses filtering, which is another dimension reduction method (different from penalization). We compare filtering, or univariate feature selection methods, with penalization methods using grouped survival data.
机译:顺序反应在医学研究中很常见。许多病理学评估和健康状况结局均以序数表报告。序数结局的一些示例包括癌症分期(I,II,III和IV)或肝病分期(正常肝,慢性肝炎,肝硬化和肝癌末期或肝细胞癌(HCC))。一直需要了解序贯临床结局与分子特征之间的致病关联。通常使用高维平台分析基因组特征,在该平台上,被询问位点(P)的数量超过样本数(n)。不幸的是,当参数(P)的数量超过观测值(n)的数量时,传统的顺序响应模型通常效果不佳。一个很好的解决方案是惩罚,例如,最小绝对收缩和选择算子(LASSO)。在这里,我们将LASSO方法(广义单调增量正向逐步算法(GMIFS)方法)扩展到顺序响应模型。具体来说,本研究详细介绍了将GMIFS方法扩展到概率链序数响应模型和定型logit模型的方法。此外,在Park和Casella(2008)提出的贝叶斯LASSO的启发下,我们开发了一种包含惩罚项的序数响应模型。这样就可以实现特征选择和结果预测。我们关注的顺序响应模型是累积logit模型,并且将其性能与常客LASSO累积logit模型(GMIFS)进行比较。除了GMIFS和惩罚贝叶斯累积logit模型之外,本研究还着重于过滤,即另一种降维方法(不同于惩罚)。我们将过滤或单变量特征选择方法与使用分组生存数据的惩罚方法进行比较。

著录项

  • 作者

    Zhou Qing;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号