首页> 外文OA文献 >Nanoparticle process optimisation for plasmonic enhanced light trapping in polycrystalline silicon thin film solar cells
【2h】

Nanoparticle process optimisation for plasmonic enhanced light trapping in polycrystalline silicon thin film solar cells

机译:多晶硅薄膜太阳能电池中等离激元增强光捕获的纳米工艺优化

摘要

Thin film photovoltaics (PV) can potentially have a lower manufacturing cost by minimising the amount of a semiconductor material used to fabricate devices. Thin-film solar cells are typically only a few micrometres thick, while crystalline Silicon (c-Si) wafer solar cells are 180 - 300 micrometers thick. Incident light is not fully absorbed in such thin-film layers, resulting in lower energy conversion efficiency compared to c-Si wafer solar cells. Therefore, effective light trapping is required to realise commercially-viable thin film cells, particularly for indirect-band-gap semiconductors such as crystalline silicon. An emerging method for light trapping in thin film solar cells is the use of metallic nanostructures that support surface plasmons. Plasmon-enhanced light absorption is shown to increase cell photocurrent in many types of solar cells. This thesis presents the author’s results on plasmonic polycrystalline silicon (poly-Si) thin film solar cells. It can be categorised into three parts, which are the optimum cell’s surface condition for nanoparticle (NP) fabrication, optimisation of Ag NP fabrication process to enhance energy conversion efficiency and a wet-etching method for re-using metallised polycrystalline silicon thin film solar cells after NP deposition. The first part (Chapter 3.2) introduces the optimum surface condition for silver NPs. NPs are formed on Si film, a native SiO2 and a thermal SiO2 layer, and absorption, scattering cross section and potential short-circuit current density are compared for varying surface conditions. The sample with NPs on the thermal SiO2 layer shows better absorption at 500 – 700 nm wavelength range, whilst the sample with NPs on the native SiO2 and with NPs directly on Si show higher absorption at greater than 700 nm. The sample with NPs on the native SiO2 layer indicates 62.5% potential short circuit current density enhancement, which is 0.7% and 12% higher enhancement than that of the sample with NPs directly on Si and NPs on the thermal SiO2 layer, respectively. The second part (Chapter 3.3) is a systematic study of optimisation of Ag NP fabrication process for enhancing efficiency of poly-Si thin film solar cells. Three factors are studied: the Ag precursor film thickness, annealing temperature and time. The thickness of the precursor film was 10, 14 and 20 nm; annealing temperature was 190, 200, 230 and 260°C; and annealing time was varied between 20 to 95 min. NPs formed from 14 nm thick Ag precursor film annealed at 230°C for 53 min result in the highest photocurrent enhancement, 33.5%, efficiency enhancement 32% and the plasmonic cell efficiency of 5.32% without a back reflector and 5.95% with the back reflector which is the highest reported efficiency for plasmonic poly-Si thin film solar cells. The last part (Chapter 3.4) introduces a wet-etching-based method for re-using metallised poly-Si thin film solar cells after NP deposition. Nitric acid is used to etch Ag NPs on the metallised cells. The optical and electrical properties of the metallised cell are compared before and after etching. The optical and electrical properties of the cell after etching are well matched with the initial value, and the Si film and the aluminium contacts are not damaged by the etching solution even after five times etching.
机译:通过最小化用于制造器件的半导体材料的数量,薄膜光伏(PV)可能具有较低的制造成本。薄膜太阳能电池通常只有几微米厚,而结晶硅(c-Si)晶片太阳能电池则只有180-300微米厚。与c-Si晶片太阳能电池相比,入射光不能完全吸收在此类薄膜层中,从而导致较低的能量转换效率。因此,需要有效的光捕获来实现商业上可行的薄膜单元,特别是对于诸如晶体硅之类的间接带隙半导体。在薄膜太阳能电池中捕获光的一种新兴方法是使用支持表面等离子体激元的金属纳米结构。在多种类型的太阳能电池中,等离子体增强的光吸收被证明可以增加电池的光电流。本文介绍了作者对等离激元多晶硅(poly-Si)薄膜太阳能电池的研究结果。它可以分为三个部分,分别是用于纳米颗粒(NP)制造的最佳电池表面条件,优化Ag NP制造工艺以提高能量转换效率以及用于重新使用金属化多晶硅薄膜的湿法蚀刻方法NP沉积后的太阳能电池。第一部分(第3.2章)介绍了银纳米颗粒的最佳表面条件。 NPs形成在Si膜,天然SiO2和热SiO2层上,并且比较了不同表面条件下的吸收,散射截面和潜在的短路电流密度。在热SiO2层上具有NP的样品在500 – 700 nm波长范围内显示出更好的吸收,而在天然SiO2上具有NPs且直接在Si上具有NPs的样品在大于700 nm处显示出更高的吸收。天然SiO2层上具有NP的样品显示出62.5%的潜在短路电流密度增强,分别比直接在Si和NPs上的NPs样品(在热SiO2层上)提高了0.7%和12%。第二部分(第3.3章)是优化Ag NP制造工艺以提高多晶硅薄膜太阳能电池效率的系统研究。研究了三个因素:Ag前体膜的厚度,退火温度和时间。前体膜的厚度为10nm,14nm和20nm;并且退火温度为190、200、230和260℃。退火时间在20至95分钟之间变化。由14 nm厚的Ag前驱体膜在230°C退火53分钟形成的NP导致最高的光电流增强,33.5%,效率增强32%和不带背反射器的等离子体电池效率为5.32%和带背反射器的5.95%这是等离子多晶硅薄膜太阳能电池效率最高的报道。最后一部分(第3.4章)介绍了一种基于湿法蚀刻的方法,用于在NP沉积之后重新使用金属化的多晶硅薄膜太阳能电池。硝酸用于蚀刻金属化细胞上的Ag NP。在蚀刻之前和之后,比较金属化电池的光学和电学性质。蚀刻后的电池的光学和电学性质与初始值很好地匹配,并且即使经过五次蚀刻,Si膜和铝触点也不会受到蚀刻溶液的破坏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号