首页> 外文OA文献 >ADDRESSING THREE PROBLEMS IN EMBEDDED SYSTEMS VIA COMPRESSIVE SENSING BASED METHODS
【2h】

ADDRESSING THREE PROBLEMS IN EMBEDDED SYSTEMS VIA COMPRESSIVE SENSING BASED METHODS

机译:通过基于压缩感测的方法解决嵌入式系统中的三个问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Compressive sensing is a mathematical theory concerning exact/approximate recovery ofsparse/compressible vectors using the minimum number of measurements called projections.Its theory covers topics such as l1 optimisation, dimensionality reduction, informationpreserving projection matrices, random projection matrices and others. In this thesiswe extend and use the theory of compressive sensing to address the challenges of limitedcomputation power and energy supply in embedded systems. Three different problemsare addressed. The first problem is to improve the efficiency of data gathering in wirelesssensor networks. Many wireless sensor networks exhibit heterogeneity because of the environment.We leverage this heterogeneity and extend the theory of compressive sensingto cover non-uniform sampling to derive a new data collection protocol. We show that thisprotocol can realise a more accurate temporal-spatial profile for a given level of energyconsumption. The second problem is to realise realtime background subtraction in embedded cameras. Background subtraction algorithms are normally computationally expensivebecause they use complex models to deal with subtle changes in background. Thereforeexisting background subtraction algorithms cannot provide realtime performance on embeddedcameras which have limited processing power. By leveraging information preservingprojection matrices, we derive a new background subtraction algorithm which is4.6 times faster and more accurate than existing methods. We demonstrate that our backgroundsubtraction algorithm can realise realtime background subtraction and tracking inan embedded camera network. The third problem is to enable efficient and accurate facerecognition on smartphones. The state-of-the-art face recognition algorithm is inspiredby compressive sensing and is based on l1 optimisation. It also uses random projectionmatrices for dimensionality reduction. A key problem of using random projection matricesis that they give highly variable recognition accuracy. We propose an algorithm tooptimise projection matrix to remove this performance variability. This means we can use fewer projections to achieve the same accuracy. This translates to a smaller l1 optimisationproblem and reduces the computation time needed on smartphones, which have limited computation power. We demonstrate the performance of our proposed method onsmartphones.
机译:压缩感知是一种数学理论,涉及使用最小数量的称为投影的测量来精确/近似恢复稀疏/可压缩矢量,其理论涉及诸如l1优化,降维,信息保留投影矩阵,随机投影矩阵等主题。在本文中,我们扩展并使用了压缩感测理论来解决嵌入式系统中有限的计算功率和能量供应的挑战。解决了三个不同的问题。第一个问题是提高无线传感器网络中数据收集的效率。许多无线传感器网络由于环境而表现出异质性。我们利用这种异质性并扩展了压缩感测的理论,以涵盖非均匀采样以得出新的数据收集协议。我们表明,对于给定的能耗水平,该协议可以实现更准确的时空分布。第二个问题是在嵌入式相机中实现实时背景减法。背景扣除算法通常在计算上昂贵,因为它们使用复杂的模型来处理背景的细微变化。因此,现有的背景扣除算法无法在处理能力有限的嵌入式相机上提供实时性能。通过利用信息保存投影矩阵,我们得出了一种新的背景扣除算法,该算法比现有方法快4.6倍,而且更准确。我们证明了我们的背景扣除算法可以在嵌入式相机网络中实现实时背景扣除和跟踪。第三个问题是在智能手机上实现高效,准确的面部识别。先进的人脸识别算法受压缩感测的启发,并且基于l1优化。它还使用随机投影矩阵进行降维。使用随机投影矩阵的一个关键问题是它们提供高度可变的识别精度。我们提出了一种优化投影矩阵的算法,以消除这种性能差异。这意味着我们可以使用更少的投影来达到相同的精度。这转化为较小的l1优化问题,并减少了智能手机(具有有限的计算能力)所需的计算时间。我们演示了在智能手机上提出的方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号