首页> 外文OA文献 >Superhydrophobic surfaces: an in-­situ investigation into micro-­ and nano-­scale wettability
【2h】

Superhydrophobic surfaces: an in-­situ investigation into micro-­ and nano-­scale wettability

机译:超疏水表面:对微米级和纳米级润湿性的原位研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The effect of physical roughness at multiple length scales on macro-, micro- and nanowetting behaviour of superhydrophobic surfaces was examined. Through the combination and modification of two existing techniques, Freeze Fracture Microscopy (FFM) and Synchrotron Small Angled X-ray Scattering (SAXS), a new complementary characterization system was developed to quantify wetting behaviour at the micro- and nanoscale.Tailored superhydrophobic surfaces were developed, which exhibited both fractal and non-fractal structures. Non-fractal surfaces were fabricated using photolithography to isotropically pattern micron-sized pillars followed by an additional nanoparticle coating. Fractal surfaces were fabricated using sol-gel chemistry to generate a hydrophobic, gelated nanoparticle system on a silicon substrate. The surfaces were immersed into aqueous fluids of various surface tensions and their wetting behaviour characterized in-situ. A wetting model was established by observing the progression of wetting through well-defined micro- and nanoroughness of non-fractal surfaces as a function of fluid surface tension. Applying this model to two fractal superhydrophobic surfaces, the origin of differing nanowetting behaviour despite identical macroscopic wettability was revealed to be the presence of pore structures, rather than roughness, at multiple length scales. Results revealed that, for non-fractal surfaces, the wetting progression is divided between preferential micro- or nano-wetting phenomena. Non-fractal superhydrophobic surfaces preferentially wet nanoscopically, whereas non-superhydrophobic surfaces wet microscopically. This suggests that the lowest free energy state can be fine-tuned by the varying pitch of the photolithographically patterned micro-roughness. Fractal superhydrophobic surfaces, on the other hand, undergo a more complex wetting progression and are governed by the aggregation behaviour of the silica nanoparticles. In-situ SAXS analysis of a nano-porous silica gel network revealed that a greater proportion of the structure is wettable compared to an engineered silica gel network consisting of intercalating micro-pores. This indicates that the distinct geometric features afforded by an engineered level of micro-pores within a fractal superhydrophobic surface provide a level of resilience against wetting.
机译:研究了在多个长度尺度上的物理粗糙度对超疏水表面的宏观,微观和纳米润湿行为的影响。通过对两种现有技术的组合和修改,冷冻断裂显微镜(FFM)和同步加速器小角度X射线散射(SAXS),开发了一种新的互补表征系统,以量化微尺度和纳米尺度的润湿行为。展示了分形和非分形结构。使用光刻技术制造各形分形的表面,以各向同性地图案化微米级的柱,然后再进行额外的纳米颗粒涂层。分形表面是使用溶胶-凝胶化学方法制造的,以在硅基板上生成疏水的凝胶纳米颗粒系统。将表面浸入具有各种表面张力的水性流体中,并对其润湿行为进行原位表征。通过观察明确定义的非分形表面的微观和纳米粗糙度的润湿过程作为流体表面张力的函数,建立了润湿模型。将此模型应用于两个分形的超疏水表面,尽管宏观润湿性相同,但不同的纳米润湿行为的根源却是存在多个长度尺度的孔结构,而不是粗糙度。结果表明,对于非分形表面,润湿进程分为优先的微润湿或纳米润湿现象。非分形的超疏水表面优先在纳米级润湿,而非分形的超疏水表面在微观上润湿。这表明可以通过改变光刻图案化的微粗糙度的间距来微调最低的自由能态。另一方面,分形超疏水表面经历了更复杂的润湿过程,并受二氧化硅纳米粒子的聚集行为支配。纳米多孔硅胶网络的原位SAXS分析显示,与由嵌入微孔组成的工程硅胶网络相比,该结构可润湿的比例更大。这表明由分形的超疏水性表面内工程水平的微孔提供的独特几何特征提供了一定水平的抗湿性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号