首页> 外文OA文献 >Co-optimising CO2 storage and enhanced recovery in gas and gas condensate reservoirs
【2h】

Co-optimising CO2 storage and enhanced recovery in gas and gas condensate reservoirs

机译:共同优化二氧化碳的存储并提高天然气和天然气凝析气藏的采收率

摘要

Burning fossil fuels supply energy and releases carbon dioxide (CO2). Carbon capture and storage (CCS) can reduce CO2 emissions. However, CCS is an expensive process. Integrating CCS with a producing gas reservoir potentially offsets the incremental costs by enhancing gas recovery. This thesis looks at the techno-economics potential of co-optimising enhanced gas recovery (EGR), enhanced gas condensate recovery (EGCR) and CO2 storage in gas and gas condensate reservoirs. This thesis aims to demonstrate when it is best to inject CO2 for simultaneous EGR, EGCR and CO2 storage developments.This co-optimisation evaluation examines hypothetical, homogeneous, isotropic and non-dipping gas and gas condensate reservoirs. The economics model estimates field development net cash flow with a simple taxation regime. Field development strategy is a combination of field development parameters. The optimal field development strategy is to maximise the field development net present value (NPV).The gas condensate reservoirs co-optimisation analyses show that it is best to inject CO2 during production. This is because it maximises the NPV. However the optimal injection time depends on reservoir characteristics. The difference is caused by different fluid behaviour. In closed gas condensate reservoirs, production declines because of condensate blockage around production wells. Injection during production avoids condensate blockage by maintaining reservoir pressure above the dew point. Furthermore, delayed CO2 injection delays CO2 breakthrough. Therefore, production is continuous. Bottom-water drive gas condensate reservoirs experience production decline when water breaks through at production wells. Injecting CO2 earlier for a bottom-water drive gas condensate reservoir minimises water influx from the underlying aquifer and delays CO2 and water breakthrough.Bottom-water drive gas reservoir co-optimisation analyses also suggest that it is most profitable to inject CO2 during production. This is because it minimises water influx and delays CO2 breakthrough. Literature suggests that a depleted gas reservoir has maximum EGR, EGCR or CO2 storage capacities. However, literature concentrates on optimising incremental recoveries or CO2 storage capacity. This research has provided operators with the potential to co-optimise simultaneous EGR, EGCR and CO2 storage in gas reservoirs. This allows us to continue utilising methane and condensate as a fuel while minimising CO2 emission.
机译:燃烧化石燃料可提供能量并释放二氧化碳(CO2)。碳捕集与封存(CCS)可以减少二氧化碳的排放。但是,CCS是一个昂贵的过程。将CCS与生产气藏集成在一起,可以通过提高气体回收率来抵消增加的成本。本文着眼于共同优化提高天然气采收率(EGR),提高天然气凝析气回收率(EGCR)以及在天然气和天然气凝析气藏中二氧化碳存储的技术经济潜力。本文旨在说明何时最好同时注入二氧化碳以同时进行EGR,EGCR和CO2的储存开发。这项共同优化评估研究了假设的,均质的,各向同性的和不浸入的气体和凝析气藏。经济学模型通过简单的税收制度估算油田开发的净现金流量。现场开发策略是现场开发参数的组合。最优的田间开发策略是使田间开发的净现值(NPV)最大化。凝析气藏的共同优化分析表明,在生产过程中最好注入二氧化碳。这是因为它使NPV最大化。但是,最佳注入时间取决于储层特征。差异是由不同的流体行为引起的。在封闭的凝析气藏中,由于生产井周围的凝结物堵塞,产量下降。生产过程中的注入通过将储层压力保持在露点以上来避免冷凝水阻塞。此外,延迟的二氧化碳注入延迟了二氧化碳的突破。因此,生产是连续的。当水在生产井中突破时,底水驱动气凝析油储层的产量会下降。尽早注入CO2到底部水驱气凝析油藏可以最大程度地减少来自下层含水层的水流入,并延迟CO2和水的突破。底部驱动气藏的协同优化分析也表明在生产过程中注入CO2最有利可图。这是因为它最大程度地减少了水的流入并延迟了二氧化碳的突破。文献表明,枯竭的储气库具有最大的EGR,EGCR或CO2储存能力。但是,文献集中在优化增量回收率或CO2储存容量上。这项研究为操作员提供了共同优化储气库中同时EGR,EGCR和CO2储存的潜力。这使我们能够继续利用甲烷和冷凝液作为燃料,同时最大程度地减少二氧化碳的排放。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号