首页> 外文OA文献 >Machine learning for automatic classification of remotely sensed data
【2h】

Machine learning for automatic classification of remotely sensed data

机译:机器学习可对遥感数据进行自动分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As more and more remotely sensed data becomes available it is becoming increasinglyharder to analyse it with the more traditional labour intensive, manualmethods. The commonly used techniques, that involve expert evaluation, arewidely acknowledged as providing inconsistent results, at best. We need moregeneral techniques that can adapt to a given situation and that incorporate thestrengths of the traditional methods, human operators and new technologies.The difficulty in interpreting remotely sensed data is that often only a smallamount of data is available for classification. It can be noisy, incomplete or containirrelevant information.Given that the training data may be limited we demonstrate a variety of techniquesfor highlighting information in the available data and how to select the mostrelevant information for a given classification task. We show that more consistentresults between the training data and an entire image can be obtained, and howmisclassification errors can be reduced. Specifically, a new technique for attributeselection in neural networks is demonstrated.Machine learning techniques, in particular, provide us with a means of automatingclassification using training data from a variety of data sources, including remotelysensed data and expert knowledge.A classification framework is presented in this thesis that can be used with anyclassifier and any available data. While this was developed in the context ofvegetation mapping from remotely sensed data using machine learning classifiers,it is a general technique that can be applied to any domain. The emphasis ofthe applicability for this framework being domains that have inadequate trainingdata available.
机译:随着越来越多的遥感数据变得可用,使用更传统的劳动密集型人工方法来分析数据变得越来越困难。普遍认为,涉及专家评估的常用技术充其量只能提供不一致的结果。我们需要更通用的技术来适应特定情况,并结合传统方法,人工操作员和新技术的优势。解释遥感数据的困难在于,通常只有少量数据可用于分类。可能是嘈杂的信息,不完整的信息或包含不相关的信息。鉴于训练数据可能会受到限制,我们展示了多种技术来突出显示可用数据中的信息以及如何为给定分类任务选择最相关的信息。我们表明,训练数据和整个图像之间可以获得更一致的结果,并且可以减少分类错误。具体来说,展示了一种用于神经网络属性选择的新技术,特别是机器学习技术,它为我们提供了一种使用来自各种数据源的训练数据(包括遥感数据和专家知识)进行自动分类的方法。该论文可与任何分类器和任何可用数据一起使用。尽管这是在使用机器学习分类器从遥感数据进行植被映射的背景下开发的,但它是可以应用于任何领域的通用技术。该框架适用性的重点是训练数据不足的领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号