首页> 外文OA文献 >An immersed boundary method for fluid–structure interaction with compressible multiphase flows
【2h】

An immersed boundary method for fluid–structure interaction with compressible multiphase flows

机译:流体边界与可压缩多相流相互作用的沉浸边界方法

摘要

© 2017 Elsevier Inc. This paper presents a two-dimensional immersed boundary method for fluid–structure interaction with compressible multiphase flows involving large structure deformations. This method involves three important parts: flow solver, structure solver and fluid–structure interaction coupling. In the flow solver, the compressible multiphase Navier–Stokes equations for ideal gases are solved by a finite difference method based on a staggered Cartesian mesh, where a fifth-order accuracy Weighted Essentially Non-Oscillation (WENO) scheme is used to handle spatial discretization of the convective term, a fourth-order central difference scheme is employed to discretize the viscous term, the third-order TVD Runge–Kutta scheme is used to discretize the temporal term, and the level-set method is adopted to capture the multi-material interface. In this work, the structure considered is a geometrically non-linear beam which is solved by using a finite element method based on the absolute nodal coordinate formulation (ANCF). The fluid dynamics and the structure motion are coupled in a partitioned iterative manner with a feedback penalty immersed boundary method where the flow dynamics is defined on a fixed Lagrangian grid and the structure dynamics is described on a global coordinate. We perform several validation cases (including fluid over a cylinder, structure dynamics, flow induced vibration of a flexible plate, deformation of a flexible panel induced by shock waves in a shock tube, an inclined flexible plate in a hypersonic flow, and shock-induced collapse of a cylindrical helium cavity in the air), and compare the results with experimental and other numerical data. The present results agree well with the published data and the current experiment. Finally, we further demonstrate the versatility of the present method by applying it to a flexible plate interacting with multiphase flows.
机译:©2017 Elsevier Inc.本文提出了一种二维沉浸边界方法,用于流体-结构与涉及大结构变形的可压缩多相流的相互作用。该方法涉及三个重要部分:流动求解器,结构求解器和流固耦合。在流动求解器中,基于交错笛卡尔网格的有限差分法求解理想气体的可压缩多相Navier–Stokes方程,其中使用五阶精度加权本质非振荡(WENO)方案来处理空间离散化对流项,采用四阶中心差分方案离散粘性项,采用三阶TVD Runge-Kutta方案离散时间项,采用水平集方法捕获多对流项。物质界面。在这项工作中,所考虑的结构是几何非线性梁,该梁通过使用基于绝对节点坐标公式(ANCF)的有限元方法来求解。流体动力学和结构运动通过反馈罚分沉浸边界方法以分区迭代的方式耦合,其中在固定的拉格朗日网格上定义了流体动力学,并在全局坐标上描述了结构动力学。我们执行了几个验证案例(包括圆柱体上的流体,结构动力学,柔性板的流动引起的振动,在冲击管中的冲击波引起的柔性板的变形,高超声速流动中的倾斜的柔性板以及由冲击引起的圆柱氦气在空气中的破裂),并将结果与​​实验数据和其他数值数据进行比较。目前的结果与公开的数据和当前的实验非常吻合。最后,我们通过将其应用到与多相流相互作用的柔性板上,进一步证明了本方法的多功能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号