首页> 外文OA文献 >Colloidal Silicon Quantum Dots: From Preparation to the Modifications of Self-Assembled Monolayers for Bio-applications
【2h】

Colloidal Silicon Quantum Dots: From Preparation to the Modifications of Self-Assembled Monolayers for Bio-applications

机译:胶体硅量子点:从制备到生物应用的自组装单分子膜的修改。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Quantum dots (QDs) are semiconductor nanocrystals with unique photophysical properties. Quantum dots have drawn broad research interests in the past three decades, because of their applications in optoelectronic devices, solar cells and fluorescent imaging agents in biomedicine. However, a major issue for the further development of this new class of materials is that many quantum dots are composed of heavy metal elements that are considered unsafe for biological purposes. Therefore, concerns over nanoparticle related toxicity have inspired the design of quantum dots made from materials with biological benign nature, such as crystalline silicon (Si).The first challenge of working with nanocrystalline silicon quantum dots (SiQDs) is the limited methods available to prepare high quality, surface functionalized nanoparticles. Among the various methods available, colloidal synthesis is of broad interests, for the simple procedures used and solution-based approaches as needed in many applications. In this thesis, chapter three and chapter four describe two new approaches of coping with this challenge, using a one-step method based on thiol-ene chemistry, and a two-step process based on copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction respectively.The second challenge of applying solution synthesized SiQDs for bio-imaging is their blue photoluminescence that can be affected by biological background signals, as well as the low excitation wavelength that may induce damage to cellular structures. Most responses to this challenge have been focused on material preparation, but limited success has been achieved when solution syntheses are involved. In this thesis, chapter five presents a completely different strategy of resolving this issue by focusing on advanced microscopy. Specifically, fluorescence lifetime imaging microscopy (FLIM) is used to observe SiQDs in intracellular contexts, utilizing their long fluorescence lifetime in the context of one-photon FLIM, two-photon FLIM and energy transfer studies (FLIM-FRET).Lastly, since surface modified colloidal SiQDs is still in its infancy of development, there are still limited studies showing their applications as biosensors. In chapter six, efforts toward the preparation of the first SiQDs protease sensor is described. This is based on Förster Resonance Energy Transfer (FRET) process involving SiQDs-dye construct, where SiQDs were used as the donor, and conjugated to an organic dye acceptor via an enzyme responsive peptide linker.
机译:量子点(QD)是具有独特光物理性质的半导体纳米晶体。在过去的三十年中,量子点因其在生物医学中的光电器件,太阳能电池和荧光成像剂中的应用而引起了广泛的研究兴趣。但是,这种新型材料的进一步发展的主要问题是许多量子点由重金属元素组成,这些重金属元素被认为对生物学目的是不安全的。因此,对与纳米粒子有关的毒性的担忧激发了由具有生物良性性质的材料(例如晶体硅(Si))制成的量子点的设计。使用纳米晶体硅量子点(SiQD)的第一个挑战是可用于制备的有限方法高质量,表面功能化的纳米粒子。在各种可用的方法中,胶体合成具有广泛的兴趣,这是因为使用的简单程序和许多应用中需要的基于溶液的方法。在本文中,第三章和第四章介绍了两种新的应对方法,一种基于硫醇-烯化学的一步法,另一种基于铜催化的叠氮化物-炔烃环加成(CuAAC)反应的两步法。将溶液合成的SiQD用于生物成像的第二个挑战是它们的蓝色光致发光,它可能会受到生物学背景信号的影响,以及低激发波长可能会导致细胞结构受损。应对这一挑战的大多数应对方法都集中在材料制备上,但是当涉及溶液合成时,只能取得有限的成功。在本文中,第五章提出了一种完全不同的策略,即通过关注高级显微镜技术来解决该问题。具体而言,荧光寿命成像显微镜(FLIM)用于在细胞内背景下观察SiQD,在单光子FLIM,两光子FLIM和能量转移研究(FLIM-FRET)的背景下利用其较长的荧光寿命。修饰的胶体SiQD仍处于发展初期,仍然有有限的研究表明它们作为生物传感器的应用。第六章介绍了第一个SiQDs蛋白酶传感器的制备工作。这基于涉及SiQDs-染料构建体的福斯特共振能量转移(FRET)过程,其中SiQD被用作供体,并通过酶反应性肽接头与有机染料受体偶联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号