首页> 外文OA文献 >A new bidirectional AC-DC converter using matrix converter and Z-source converter topologies
【2h】

A new bidirectional AC-DC converter using matrix converter and Z-source converter topologies

机译:使用矩阵转换器和Z源转换器拓扑的新型双向AC-DC转换器

摘要

This thesis proposes a new bidirectional three-phase AC-DC power converter using matrix converter and Z-source inverter topologies. Advantages of the AC-DC matrix converter are the inherently controllable power factor, the tight DC voltage regulation, the wide bandwidth with quick response to load variation, the single-stage buck-voltage AC-to-DC power conversion; advantages of the z-source inverter are the increased reliability by allowing the shoot-through between upper and lower power switches of one inverter leg, insensitivity to DC bus voltage due to the extra freedom of controlling DC-link voltage. The proposed Matrix-Z-source converter (MZC) marries up both advantages of AC-DC matrix converter and Z-source inverter. It can achieve voltage-boost DC-AC inversion capable of variable voltage variable frequency (VVVF) AC output; it can achieve voltage-buck AC-DC rectification capable of inherent control over AC current phase angle and DC output regulation with a (VVVF) AC source supply. Both foresaid performance in DC-AC inversion and AC-DC rectification can be implemented in a simple open-loop control manner.Three constraints of VSI, in the bidirectional AC-DC power conversion, are the peak AC voltages are always less than DC-link voltage, closed-loop control has to be employed when DC regulation and/or AC current phase angle control are required, and AC voltage is sensitive to the variation of the DC-link voltage in DC-AC inversion. The voltage-boost inversion and/or voltage-buck rectification of MZC overcomes the first constraint; thus MZC enables the AC machine voltage increased higher than DC-link voltage hence advantages of running AC machine at relatively high voltages are enabled. The direct DC voltage regulation and inherent AC-current-phase-angle control of MZC overcomes the second constraint in an open-loop manner; hence a simplified system design is obtained with sufficient room for the further improvement by closed-loop control schemes. The extra freedom in controlling DC-link voltage of MZC overcomes the third constraint hence a DC source voltage adaptable inverter is obtained. This thesis focuses on the study of the feasibility of the proposed MZC through theoretical analysis and experimental verification. At first, the proposed MZC is conceptually constructed by examining the quadrant operation of AC-DC matrix converter and Z-source inverter. After the examination of the operating principles of both AC-DC matrix converter and Z-source inverter, the configuration of MZC is then proposed. The MZC has two operating modes: DC-AC inversion and AC-DC rectification. Circuit analysis for both operating modes shows that the new topology does not impose critical conflict in circuit design or extra restriction in parameterization. On the contrary, one version of the proposed MZC can make full advantage of Z-source network components in both operating modes, i.e. a pair of Z-source inductor and capacitor can be used as low-pass filter in AC-DC rectification. The modulation strategy, average modeling of system, and features of critical variables for circuit design of the proposed MZC were examined for each operating mode. Simulations of the proposed MZC and its experimental verification have been presented. Analytical models of conduction and switching losses of the power-switch network in different operating mode have shown that the losses in the MZC compare favorably with conventional VSI for a range of power factor and modulation indices.
机译:本文提出了一种采用矩阵变换器和Z源逆变器拓扑的新型双向三相AC-DC功率变换器。 AC-DC矩阵转换器的优点是固有的可控功率因数,严格的DC电压调节,宽带宽以及对负载变化的快速响应,单级降压AC-DC功率转换; Z源逆变器的优点是,通过允许一个逆变器支路的上,下功率开关之间的直通,从而提高了可靠性;由于控制直流母线电压的额外自由度,对DC总线电压不敏感。提出的矩阵Z源转换器(MZC)兼具AC-DC矩阵转换器和Z源逆变器的优点。它可以实现升压DC-AC逆变,能够实现可变电压可变频率(VVVF)交流输出;它可以实现降压AC-DC整流,该整流器能够通过(VVVF)交流电源来固有地控制交流电流相位角和直流输出调节。 DC-AC逆变和AC-DC整流的预见性能都可以通过简单的开环控制方式来实现。在双向AC-DC功率转换中,VSI的三个约束是峰值交流电压始终小于DC-在需要直流调节和/或交流电流相角控制且交流电压对直流-交流逆变中直流环节电压变化敏感的情况下,必须采用闭环控制。 MZC的升压反相和/或降压整流克服了第一个约束;因此,MZC可使交流电机电压升高到高于直流母线电压,因此具有在较高电压下运行交流电机的优势。 MZC的直接直流电压调节和固有的交流电流相角控制以开环的方式克服了第二个约束。因此,可以获得简化的系统设计,并为闭环控制方案的进一步改进留有足够的空间。控制MZC的直流母线电压的额外自由度克服了第三个限制,因此获得了可适应直流电源电压的逆变器。本文通过理论分析和实验验证,对提出的MZC的可行性进行研究。首先,通过检查AC-DC矩阵转换器和Z源逆变器的象限操作,从概念上构造了建议的MZC。在研究了交直流矩阵转换器和Z源逆变器的工作原理之后,提出了MZC的配置。 MZC具有两种工作模式:DC-AC逆变和AC-DC整流。对两种工作模式的电路分析表明,新拓扑不会对电路设计造成严重冲突,也不会对参数设置造成额外限制。相反,提出的MZC的一个版本可以在两种工作模式下充分利用Z源网络组件,即,一对Z源电感器和电容器可用作AC-DC整流中的低通滤波器。针对每种工作模式,研究了所提出的MZC的调制策略,系统平均建模以及用于电路设计的关键变量的功能。提出了拟议的MZC的仿真及其实验验证。功率开关网络在不同工作模式下的导通和开关损耗的分析模型表明,对于一系列功率因数和调制指数,MZC中的损耗与常规VSI相比具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号