首页> 外文OA文献 >Learning Level Sets and Level Learning Sets: innovations in variational methods for data partitioning
【2h】

Learning Level Sets and Level Learning Sets: innovations in variational methods for data partitioning

机译:学习水平集和水平学习集:数据分区变异方法的创新

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation proposes a novel theoretical framework for the data partitioning problem in computer vision and machine learning. The framework is based on level set methods that are derived from variational calculus and involve a curve-based objective function which integrates both boundary and region based information in a generic form. The proposed approaches within the framework provide original solutions to two important problems in variational methods, namely parameter tuning and information fusion, collectively termed Learning Level Sets in this thesis. Moreover, a novel pattern classification algorithm, namely Level Learning Sets, is proposed to classify any general dataset, including sparse and non sparse data. It is based on the same optimisation process of the objective function directly related to the curve propagation theory used in level set theory.The proposed approach learns the knowledge required for parameter tuning and information fusion in level set methods using machine learning techniques. It uses acquired knowledge to automatically perform parameter tuning and information fusion in level set methods. In the case of pattern classification, variational methods using level set theory optimise decision boundary construction in feature space. Consequently, the optimised values of the objective level set function over the feature space represent the model for pattern classification.The proposed automatic parameter tuning and information fusion method embedded in the level set method framework has been employed to provide original solutions to image segmentation and object extraction in computer vision. On the other hand, the Level Learning Set has been extended and applied to a variety of pattern classification problems".Several experimental results for each of the above methods are provided, demonstrating the effectiveness of the proposed solutions and indicating the potential of the automatic and dynamic tuning and fusion approaches as well as the Level Learning Set model.
机译:本文为计算机视觉和机器学习中的数据分区问题提出了一种新颖的理论框架。该框架基于从变分演算派生的级别集方法,并且涉及基于曲线的目标函数,该函数以通用形式集成了基于边界和区域的信息。在框架内提出的方法为变分方法中的两个重要问题提供了原始解决方案,即参数调整和信息融合,在本文中统称为学习水平集。此外,提出了一种新颖的模式分类算法,即水平学习集,以对任何通用数据集进行分类,包括稀疏和非稀疏数据。它基于与水平集理论中使用的曲线传播理论直接相关的目标函数的相同优化过程。所提出的方法使用机器学习技术来学习水平集方法中参数调整和信息融合所需的知识。它使用获得的知识以级别集方法自动执行参数调整和信息融合。在模式分类的情况下,使用水平集理论的变分方法可以优化特征空间中的决策边界构造。因此,在特征空间上的目标水平集函数的最优值代表了模式分类的模型。嵌入水平集方法框架中的自动参数调整和信息融合方法被用来为图像分割和对象提供原始解决方案。提取计算机视觉。另一方面,“水平学习集”已扩展并应用于各种模式分类问题。”提供了上述每种方法的几个实验结果,证明了所提出的解决方案的有效性,并指出了自动学习和自动学习的潜力。动态调整和融合方法以及“水平学习集”模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号