首页> 外文OA文献 >Seismic response control of structures using novel adaptive passive and semi-active variable stiffness and negative stiffness devices
【2h】

Seismic response control of structures using novel adaptive passive and semi-active variable stiffness and negative stiffness devices

机译:使用新型自适应被动和半主动可变刚度和负刚度装置的结构地震响应控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Current seismic design practice promotes inelastic response in order to reduce the design forces. By allowing the structure to yield while increasing the ductility of the structure, the global forces can be kept within the limited bounds dictated by the yield strength. However, during severe earthquakes, the structures undergo significant inelastic deformations leading to stiffness and strength degradation, increased interstory drifts, and damage with residual drift. The research presented in this thesis has three components that seek to address these challenges. To prevent the inelastic effects observed in yielding systems, a new concept “apparent weakening” is proposed and verified through shake table studies in this thesis. “Apparent weakening” is introduced in the structural system using a complementary “adaptive negative stiffness device” (NSD) that mimics "yielding” of the global system thus attracting it away from the main structural system. Unlike the concept of weakening and damping, where the main structural system strength is reduced, the new system does not alter the original structural system, but produces effects compatible with an early yielding. Response reduction using NSD is achieved in a two step sequence. First the NSD, which is capable of exhibiting nonlinear elastic stiffness, is developed based on the properties of the structure. This NSD is added to the structure resulting in reduction of the stiffness of the structure and NSD assemblyor “apparent weakening”-thereby resulting in the reduction of the base shear of the assembly. Then a passive damper, designed for the assembly to reduce the displacements that are caused due to the “apparent weakening”, is added to the structure-thereby reducing the base shear, acceleration and displacement in a two step process.The primary focus of this thesis is to analyze and experimentally verify the response reduction attributes of NSD in (a) elastic structural systems (b) yielding systems and (3) multistory structures. Experimental studies on 1:3 scale three-story frame structure have confirmed that consistent reductions in displacements, accelerationsand base shear can be achieved in an elastic structure and bilinear inelastic structure by adding the NSD and viscous fluid damper. It has also been demonstrated that the stiffening in NSD will prevent the structure from collapsing. Analogous to the inelastic design, the acceleration and base shear and deformation of the structureand NSD assembly can be reduced by more than 20% for moderate ground motions and the collapse of structure can be prevented for severe ground motions. Simulation studies have been carried on an inelastic multistoried shear buildingto demonstrate the effectiveness of placing NSDs and dampers at multiple locations along the height of the building; referred to as “distributed isolation”. The results reported in this study have demonstrated that by placing a NSD in a particular story the superstructure above that story can be isolated from the effects of ground motion. Since the NSDs in the bottom floors will undergo large deformations, a generalized scheme to incorporate NSDs with different force deformation behavior in each storey is proposed. The properties of NSD are varied to minimize the localized inter-story deformation and distribute it evenly along the height of the building. Additionally, two semi-active approaches have also been proposed to improve the performance of NSD in yielding structures and also adapt to varying structure properties in real time.The second component of this thesis deals with development of a novel device to control the response of structural system using adaptive length pendulum smart tuned mass damper (ALP-STMD). A mechanism to achieve the variable pendulum length is developed using shape memory alloy wire actuator. ALP-STMD acts as avibration absorber and since the length is tuned to match the instantaneous frequency, using a STFT algorithm, all the vibrations pertaining to the dominant frequency are absorbed. ALP-STMD is capable of absorbing all the energy pertaining to the tuned-frequency of the system; the performance is experimentally verified for forced vibration (stationary and non-stationary) and free vibration.The third component of this thesis covers the development of an adaptive control algorithm to compensate hysteresis in hysteretic systems. Hysteretic system with variable stiffness hysteresis is represented as a quasi-linear parameter varying (LPV) system and a gain scheduled controller is designed for the quasi-LPV system using linear matrix inequalities approach. Designed controller is scheduled based on two parameters: linear time-varying stiffness (slow varying parameter) and the stiffness of friction hysteresis (fast varying parameter). The effectiveness of the proposedcontroller is demonstrated through numerical studies by comparing the proposed controller with fixed robust H∞ controller. Superior tracking performance of the LPV-GSover the robust H∞ controller in different displacement ranges and various stiffness switching cases is clearly evident from the results presented in this thesis. The LPV-GS controller is capable of adapting to the parameter changes and is effective over the entire range of parameter variations.
机译:当前的地震设计实践促进了非弹性响应,以减小设计力。通过允许结构屈服,同时增加结构的延展性,可以将全局力保持在屈服强度所规定的有限范围内。但是,在强烈地震期间,结构会发生显着的非弹性变形,从而导致刚度和强度降低,层间偏移增加以及残余偏移损坏。本文提出的研究包括三个组成部分,旨在应对这些挑战。为了防止在屈服系统中观察到非弹性效应,本文提出了一个新的概念“表观减弱”,并通过振动台研究对其进行了验证。在结构系统中使用“自适应负刚度装置”(NSD)来引入“表观减弱”,该装置模仿全局系统的“屈服”,从而将其吸引到主要结构系统之外。降低了主要结构系统的强度,新系统未更改原始结构系统,但产生了与早期屈服相适应的效果,使用NSD的响应降低过程分两步完成:首先是NSD,它能够表现出非线性弹性刚度是根据结构的特性而开发的,将此NSD添加到结构中会导致结构刚度降低,并且NSD装配体或“表观减弱”,从而导致装配体的基础剪切力减小。然后,为该组件设计的被动减震器被添加到结构中,以减少由于“表观减弱”而引起的位移。在两个步骤中减少基础剪力,加速度和位移。本文的主要重点是分析和实验验证NSD在(a)弹性结构系统(b)屈服系统和(3)多层结构中的响应减小属性。在1:3比例的三层框架结构上进行的实验研究证实,通过添加NSD和粘性流体阻尼器,可以在弹性结构和双线性非弹性结构中实现位移,加速度和基础剪力的一致减小。还已经证明,NSD的加强将防止结构塌陷。类似于非弹性设计,对于中等的地面运动,结构和NSD组件的加速度,基础剪切和变形可以减少20%以上,对于剧烈的地面运动,可以防止结构崩溃。对非弹性多层剪切建筑进行了模拟研究,以证明将NSD和减震器沿建筑高度放置在多个位置的有效性。称为“分布式隔离”。这项研究报告的结果表明,通过在特定故事中放置NSD,可以将故事上方的上部结构与地面运动的影响区分开。由于底层的NSD会发生较大的变形,因此提出了一种在每层中合并具有不同力变形行为的NSD的通用方案。 NSD的属性各不相同,以最大限度地减少局部的层间变形,并使其沿建筑物的高度均匀分布。此外,还提出了两种半主动方法来提高NSD在屈服结构中的性能,并实时适应变化的结构特性。本论文的第二部分涉及一种新型的控制结构响应的装置的开发。系统采用自适应长度摆智能调谐质量阻尼器(ALP-STMD)。使用形状记忆合金线致动器开发了一种实现可变摆长的机制。 ALP-STMD用作减震器,由于使用STFT算法将长度调整为与瞬时频率匹配,所有与主频有关的振动都会被吸收。 ALP-STMD能够吸收与系统调谐频率有关的所有能量。该性能已通过实验验证了强制振动(静态和非静态)和自由振动的影响。本论文的第三部分介绍了自适应控制算法的发展,以补偿滞后系统中的滞后。具有可变刚度磁滞的磁滞系统表示为准线性参数变化(LPV)系统,并且使用线性矩阵不等式方法为准LPV系统设计了增益调度控制器。根据以下两个参数对设计的控制器进行调度:线性时变刚度(缓慢变化的参数)和摩擦滞后刚度(快速变化的参数)。通过将拟议的控制器与固定鲁棒H∞控制器进行比较,通过数值研究证明了拟议的控制器的有效性。从本文提出的结果可以清楚地看出,LPV-GS在不同位移范围和不同刚度切换情况下在鲁棒H∞控制器上具有出色的跟踪性能。 LPV-GS控制器能够适应参数变化,并在整个参数变化范围内有效。

著录项

  • 作者

    Pasala Dharma Theja;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号