首页> 外文OA文献 >GPU-accelerated discontinuous Galerkin methods on hybrid meshes: applications in seismic imaging
【2h】

GPU-accelerated discontinuous Galerkin methods on hybrid meshes: applications in seismic imaging

机译:混合网格上GPU加速的不连续Galerkin方法:在地震成像中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Seismic imaging is a geophysical technique assisting in the understanding of subsurface structure on a regional and global scale. With the development of computer technology, computationally intensive seismic algorithms have begun to gain attention in both academia and industry. These algorithms typically produce high-quality subsurface images or models, but require intensive computations for solving wave equations.Achieving high-fidelity wave simulations is challenging: first, numerical wave solutions may suffer from dispersion and dissipation errors in long-distance propagations; second, the efficiency of wave simulators is crucial for many seismic applications. High-order methods have advantages of decreasing numerical errors efficiently and hence are ideal for wave modelings in seismic problems.Various high order wave solvers have been studied for seismic imaging. One of the most popular solvers is the finite difference time domain (FDTD) methods. The strengths of finite difference methods are the computational efficiency and ease of implementation, but the drawback of FDTD is the lack of geometric flexibility. It has been shown that standard finite difference methods suffer from first order numerical errors at sharp media interfaces.In contrast to finite difference methods, discontinuous Galerkin (DG) methods, a class of high-order numerical methods built on unstructured meshes, enjoy geometric flexibility and smaller interface errors. Additionally, DG methods are highly parallelizable and have explicit semi-discrete form, which makes DG suitable for large-scale wave simulations. In this dissertation, the discontinuous Galerkin methods on hybrid meshes are developed and applied to two seismic algorithms---reverse time migration (RTM) and full waveform inversion (FWI). This thesis describes in depth the steps taken to develop a forward DG solver for the framework that efficiently exploits the element specific structure of hexahedral, tetrahedral, prismatic and pyramidal elements. In particular, we describe how to exploit the tensor-product property of hexahedral elements, and propose the use of hex-dominant meshes to speed up the computation. The computational efficiency is further realized through a combination of graphics processing unit (GPU) acceleration and multi-rate time stepping. As DG methods are highly parallelizable, we build the DG solver on multiple GPUs with element-specific kernels. Implementation details of memory loading, workload assignment and latency hiding are discussed in the thesis. In addition, we employ a multi-rate time stepping scheme which allows different elements to take different time steps.This thesis applies DG schemes to RTM and FWI to highlight the strengths of the DG methods. For DG-RTM, we adopt the boundary value saving strategy to avoid data movement on GPUs and utilize the memory load in the temporal updating procedure to produce images of higher qualities without a significant extra cost. For DG-FWI, a derivation of the DG-specific adjoint-state method is presented for the fully discretized DG system. Finally, sharp media interfaces are inverted by specifying perturbations of element faces, edges and vertices.
机译:地震成像是一种地球物理技术,有助于在区域和全球范围内理解地下结构。随着计算机技术的发展,计算密集型地震算法已开始在学术界和工业界引起关注。这些算法通常可产生高质量的地下图像或模型,但需要大量的计算来求解波动方程。实现高保真波模拟具有挑战性:首先,数值波解决方案可能会遭受长距离传播中的色散和耗散误差;其次,波浪模拟器的效率对于许多地震应用至关重要。高阶方法具有有效减少数值误差的优点,因此是地震问题中波动模型的理想选择。研究了各种高阶波解算器用于地震成像。最受欢迎的求解器之一是时域有限差分(FDTD)方法。有限差分方法的优点是计算效率高,易于实现,但是FDTD的缺点是缺乏几何灵活性。结果表明,标准的有限差分方法在锐利的介质界面处遭受一阶数值误差的影响。与有限差分方法相比,不连续Galerkin(DG)方法是一类基于非结构化网格的高阶数值方法,具有几何灵活性以及较小的界面错误。此外,DG方法具有高度可并行性,并且具有显式的半离散形式,这使得DG适合大型波浪模拟。本文研究了混合网格上的不连续Galerkin方法,并将其应用于两种地震算法-逆时偏移(RTM)和全波形反演(FWI)。本文深入描述了为有效开发六面体,四面体,棱柱形和金字塔形元素的特定于框架的框架而开发前向DG求解器的步骤。特别是,我们描述了如何利用六面体元素的张量积性质,并提出了使用十六进制占优网格来加速计算的方法。通过将图形处理单元(GPU)加速和多速率时间步长相结合,可以进一步实现计算效率。由于DG方法具有高度可并行性,因此我们可以在具有特定于元素的内核的多个GPU上构建DG解算器。本文讨论了内存加载,工作负载分配和延迟隐藏的实现细节。此外,我们采用了一种多速率时间步进方案,该方案允许不同的元素采用不同的时间步长。本文将DG方案应用于RTM和FWI,以突出DG方法的优势。对于DG-RTM,我们采用边界值节省策略来避免GPU上的数据移动,并在临时更新过程中利用内存负载来生成更高质量的图像,而不会产生大量额外费用。对于DG-FWI,针对完全离散的DG系统,提出了DG特定的伴随状态方法的推导。最后,通过指定元素面,边和顶点的扰动来反转清晰的媒体界面。

著录项

  • 作者

    Wang Zheng;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号