首页> 外文OA文献 >Split miner: Discovering accurate and simple business process models from event logs
【2h】

Split miner: Discovering accurate and simple business process models from event logs

机译:拆分矿工:从事件日志中发现准确而简单的业务流程模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The problem of automated discovery of process models from event logs has been intensively researched in the past two decades. Despite a rich field of proposals, state-ofthe- art automated process discovery methods suffer from two recurrent deficiencies when applied to real-life logs: (i) they produce large and spaghetti-like models; and (ii) they produce models that either poorly fit the event log (low fitness) or highly generalize it (low precision). Striking a tradeoff between these quality dimensions in a robust and scalable manner has proved elusive. This paper presents an automated process discovery method that produces simple process models with low branching complexity and consistently high and balanced fitness, precision and generalization, while achieving execution times 2-6 times faster than state-of-the-art methods on a set of 12 real-life logs. Further, our approach guarantees deadlock-freedom for cyclic process models and soundness for acyclic. Our proposal combines a novel approach to filter the directly-follows graph induced by an event log, with an approach to identify combinations of split gateways that accurately capture the concurrency, conflict and causal relations between neighbors in the directly-follows graph.
机译:在过去的二十年中,已经对从事件日志中自动发现过程模型的问题进行了深入研究。尽管提出了大量建议,但先进的自动过程发现方法在应用于真实日志时会遇到两个经常性的缺陷:(i)它们产生大型且类似于意大利面条的模型; (ii)他们产生的模型要么不太适合事件日志(适应性低),要么高度概括了事件日志(精度低)。事实证明,以健壮和可扩展的方式在这些质量维度之间进行折衷是难以实现的。本文提出了一种自动过程发现方法,该方法可生成简单的过程模型,具有较低的分支复杂度,并且始终如一地具有较高的平衡性,准确性和泛化性,而执行时间比一组现有方法的最新方法快2-6倍。 12个真实日志。此外,我们的方法可保证循环过程模型无死锁,而无循环则保证稳健性。我们的建议结合了一种新颖的方法来过滤由事件日志引起的直接关注图,以及一种用于识别拆分网关组合的方法,这些组合可以准确地捕获直接关注图中邻居之间的并发,冲突和因果关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号