首页> 外文OA文献 >Adaptive and robust evidence theory with applications in prediction of floor water inrush in coal mine
【2h】

Adaptive and robust evidence theory with applications in prediction of floor water inrush in coal mine

机译:自适应鲁棒证据理论及其在煤矿井下突水预测中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Internet of Things generates rich information either from different sources or the same source via different measurement methods. This demands data fusion for decision making. Despite the progress in data fusion, existing data fusion techniques, such as the classic Dempster–Shafer evidence Theory, face challenges when dealing with highly conflicting sources of evidence. To address this problem, an Adaptive and Robust evidence Theory (ART) is presented in this paper through a robust combination of conjunctive and disjunctive rules. It is capable of handling both conflicting and reliable sources of evidence. When the sources of evidence are reliable, the conjunctive rule plays a predominant role, whereas if the sources of evidence are in high conflict the disjunctive rule is critical. Our ART approach was compared with existing representative evidence theory methods through two examples, and was further applied in the prediction of floor water inrush in coal mines. The ART approach presented in this paper was demonstrated to behave better than the existing methods.
机译:物联网通过不同的测量方法从不同来源或同一来源生成丰富的信息。这需要数据融合以用于决策。尽管数据融合取得了进展,但现有的数据融合技术(例如经典的Dempster-Shafer证据理论)在处理高度冲突的证据来源时仍面临挑战。为了解决这个问题,本文通过结合规则和析取规则,提出了一种自适应鲁棒证据理论(ART)。它能够处理矛盾和可靠的证据来源。当证据来源可靠时,合取规则起主要作用,而如果证据来源存在高度冲突,则取断规则至关重要。通过两个例子,将我们的ART方法与现有的代表性证据理论方法进行了比较,并将其进一步用于预测煤矿底板水涌入量。事实证明,本文提出的ART方法比现有方法具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号