首页> 外文OA文献 >Accurate phenotyping: Reconciling approaches through Bayesian model averaging
【2h】

Accurate phenotyping: Reconciling approaches through Bayesian model averaging

机译:准确的表型分析:通过贝叶斯模型平均对账方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Genetic research into complex diseases is frequently hindered by a lack of clear biomarkers for phenotype ascertainment. Phenotypes for such diseases are often identified on the basis of clinically defined criteria; however such criteria may not be suitable for understanding the genetic composition of the diseases. Various statistical approaches have been proposed for phenotype definition; however our previous studies have shown that differences in phenotypes estimated using different approaches have substantial impact on subsequent analyses. Instead of obtaining results based upon a single model, we propose a new method, using Bayesian model averaging to overcome problems associated with phenotype definition. Although Bayesian model averaging has been used in other fields of research, this is the first study that uses Bayesian model averaging to reconcile phenotypes obtained using multiple models. We illustrate the new method by applying it to simulated genetic and phenotypic data for Kofendred personality disorder—an imaginary disease with several sub-types. Two separate statistical methods were used to identify clusters of individuals with distinct phenotypes: latent class analysis and grade of membership. Bayesian model averaging was then used to combine the two clusterings for the purpose of subsequent linkage analyses. We found that causative genetic loci for the disease produced higher LOD scores using model averaging than under either individual model separately. We attribute this improvement to consolidation of the cores of phenotype clusters identified using each individual method.
机译:缺乏明确的表型确定生物标志物常常阻碍对复杂疾病的遗传研究。通常根据临床定义的标准来鉴定此类疾病的表型。但是,这样的标准可能不适合理解疾病的遗传组成。已经提出了用于表型定义的各种统计方法。然而,我们以前的研究表明,使用不同方法估算的表型差异对后续分析有重大影响。代替基于单个模型获得结果,我们提出了一种使用贝叶斯模型平均的新方法,以克服与表型定义相关的问题。尽管贝叶斯模型平均已在其他研究领域中使用,但这是第一个使用贝叶斯模型平均来调和使用多个模型获得的表型的研究。我们通过将其应用于模拟的Kofendred人格障碍(一种虚构的疾病,具有几种亚型)的遗传和表型数据来说明该新方法。使用两种不同的统计方法来识别具有不同表型的个体群:潜在类别分析和隶属度。然后将贝叶斯模型平均用于合并两个聚类,以进行后续的连锁分析。我们发现,使用模型平均法,该疾病的致病基因位点产生的LOD分数高于单独使用任一模型的情况。我们将这种改进归因于巩固了使用每种单独方法鉴定的表型簇核心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号