首页> 外文OA文献 >Assessment of crop insect damage using unmanned aerial systems: A machine learning approach
【2h】

Assessment of crop insect damage using unmanned aerial systems: A machine learning approach

机译:使用无人航空系统评估农作物虫害:一种机器学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Agricultural pests are responsible for millions of dollars in crop losses and management costs every year. In order to implement optimal site-specific treatments and reduce control costs, new methods to accurately monitor and assess pest damage need to be investigated. In this paper we explore the combination of unmanned aerial vehicles (UAV), remote sensing and machine learning techniques as a promising technology to address this challenge. The deployment of UAVs as a sensor platform is a rapidly growing field of study for biosecurity and precision agriculture applications. In this experiment, a data collection campaign is performed over a sorghum crop severely damaged by white grubs (Coleoptera: Scarabaeidae). The larvae of these scarab beetles feed on the roots of plants, which in turn impairs root exploration of the soil profile. In the field, crop health status could be classified according to three levels: bare soil where plants were decimated, transition zones of reduced plant density and healthy canopy areas. In this study, we describe the UAV platform deployed to collect high-resolution RGB imagery as well as the image processing pipeline implemented to create an orthoimage. An unsupervised machine learning approach is formulated in order to create a meaningful partition of the image into each of the crop levels. The aim of the approach is to simplify the image analysis step by minimizing user input requirements and avoiding the manual data labeling necessary in supervised learning approaches. The implemented algorithm is based on the K-means clustering algorithm. In order to control high-frequency components present in the feature space, a neighbourhood-oriented parameter is introduced by applying Gaussian convolution kernels prior to K-means. The outcome of this approach is a soft K-means algorithm similar to the EM algorithm for Gaussian mixture models. The results show the algorithm delivers decision boundaries that consistently classify the field into three clusters, one for each crop health level. The methodology presented in this paper represents a venue for further research towards automated crop damage assessments and biosecurity surveillance.
机译:农业害虫每年造成数百万美元的作物损失和管理费用。为了实施针对特定地点的最佳处理并降低控制成本,需要研究准确监测和评估有害生物损害的新方法。在本文中,我们探索了无人飞行器(UAV),遥感和机器学习技术的组合作为解决这一挑战的有前途的技术。无人机作为传感器平台的部署是针对生物安全和精准农业应用的快速发展的研究领域。在该实验中,对被白g严重破坏的高粱作物进行了数据收集活动(鞘翅目:Scarabaeidae)。这些金龟子甲虫的幼虫以植物的根为食,这反过来又损害了土壤剖面的根探。在田间,可以根据三个级别对作物健康状况进行分类:裸露的土地上种植了大量植物,植物密度降低的过渡带和健康的树冠面积。在这项研究中,我们描述了用于收集高分辨率RGB图像的无人机平台以及为创建正射影像而实施的图像处理管道。制定了无监督机器学习方法,以将图像有意义地划分为每个作物级别。该方法的目的是通过最小化用户输入要求并避免在有监督的学习方法中必需的手动数据标记来简化图像分析步骤。所实现的算法基于K均值聚类算法。为了控制特征空间中存在的高频分量,通过在K均值之前应用高斯卷积核来引入面向邻域的参数。这种方法的结果是一种软K均值算法,类似于用于高斯混合模型的EM算法。结果表明,该算法提供了决策边界,该边界将田地始终分为三个类别,每个作物健康水平一个。本文介绍的方法代表了对自动化作物损害评估和生物安全监测进行进一步研究的场所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号