首页> 外文OA文献 >Generalized element load method for first- and second-order element solutions with element load effect
【2h】

Generalized element load method for first- and second-order element solutions with element load effect

机译:具有单元荷载效应的一阶和二阶单元解的广义单元荷载法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The finite element method in principle adaptively divides the continuous domain with complex geometry into discrete simple subdomain by using an approximate element function, and the continuous element loads are also converted into the nodal load by means of the traditional lumping and consistent load methods, which can standardise a plethora of element loads into a typical numerical procedure, but element load effect is restricted to the nodal solution. It in turn means the accurate continuous element solutions with the element load effects are merely restricted to element nodes discretely, and further limited to either displacement or force field depending on which type of approximate function is derived. On the other hand, the analytical stability functions can give the accurate continuous element solutions due to element loads. Unfortunately, the expressions of stability functions are very diverse and distinct when subjected to different element loads that deter the numerical routine for practical applications. To this end, this paper presents a displacement-based finite element function (generalised element load method) with a plethora of element load effects in the similar fashion that never be achieved by the stability function, as well as it can generate the continuous first- and second-order elastic displacement and force solutions along an element without loss of accuracy considerably as the analytical approach that never be achieved by neither the lumping nor consistent load methods. Hence, the salient and unique features of this paper (generalised element load method) embody its robustness, versatility and accuracy in continuous element solutions when subjected to the great diversity of transverse element loads.
机译:原则上,有限元方法通过使用近似元素函数将具有复杂几何形状的连续域自适应地划分为离散的简单子域,并且还可以通过传统的集总和一致载荷方法将连续单元载荷转换为节点载荷,这可以将大量的单元载荷标准化为一个典型的数值过程,但是单元载荷的作用仅限于节点解。这又意味着具有单元载荷效应的精确连续单元解仅离散地限于单元节点,并且进一步取决于导出近似函数的类型而限制于位移或力场。另一方面,由于单元载荷,分析稳定性函数可以给出准确的连续单元解。不幸的是,当承受不同的单元载荷时,稳定性函数的表达式非常多样且截然不同,这阻碍了实际应用中的数值程序。为此,本文提出了一种基于位移的有限元函数(广义单元载荷法),具有类似的稳定性函数无法实现的大量单元载荷效应,并且可以生成连续的第一项。沿单元的二阶弹性位移和力解不会显着降低精度,这是集总方法或一致载荷方法都无法实现的分析方法。因此,当承受横向元件载荷的多样性时,本文(广义单元载荷方法)的显着和独特特征体现了其在连续单元解决方案中的鲁棒性,多功能性和准确性。

著录项

  • 作者

    Iu C.K.;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号