首页> 外文OA文献 >A preconditioned numerical solver for stiff nonlinearudreaction-diffusion equations with fractional Laplacians that avoids dense matrices
【2h】

A preconditioned numerical solver for stiff nonlinearudreaction-diffusion equations with fractional Laplacians that avoids dense matrices

机译:刚性非线性 ud的预处理数值求解器分数拉普拉斯算子的避免扩散矩阵的反应扩散方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The numerical solution of fractional partial differential equations poses significant computational challenges in regard to efficiency as a result of the spatial nonlocality of the fractional differential operators. The dense coefficient matrices that arise from spatial discretisation of these operators mean that even one-dimensional problems can be difficult to solve using standard methods on grids comprising thousands of nodes or more. In this work we address this issue of efficiency for one-dimensional, nonlinear space-fractional reaction–diffusion equations with fractional Laplacian operators.ududWe apply variable-order, variable-stepsize backward differentiation formulas in a Jacobian-free Newton–Krylov framework to advance the solution in time. A key advantage of this approach is the elimination of any requirement to form the dense matrix representation of the fractional Laplacian operator. We show how a banded approximation to this matrix, which can be formed and factorised efficiently, can be used as part of an effective preconditioner that accelerates convergence of the Krylov subspace iterative solver. Our approach also captures the full contribution from the nonlinear reaction term in the preconditioner, which is crucial for problems that exhibit stiff reactions. Numerical examples are presented to illustrate the overall effectiveness of the solver.
机译:分数阶偏微分方程的数值解由于分数微分算子的空间非局部性而对效率提出了重大的计算挑战。这些算子的空间离散化产生的密集系数矩阵意味着,在包含数千个或更多节点的网格上使用标准方法,甚至一维问题也可能难以解决。在这项工作中,我们使用分数阶Laplacian算子解决了一维非线性空间分数阶反应-扩散方程的效率问题。 ud ud在无Jacobian的Newton-Krylov中应用了可变阶,可变步长的后向微分方程框架以及时解决问题。这种方法的主要优点是消除了形成分数拉普拉斯算子的密集矩阵表示的任何要求。我们展示了如何有效地形成和分解该矩阵的带状近似,可以用作有效的预处理器的一部分,该预处理器可加快Krylov子空间迭代求解器的收敛速度。我们的方法还捕获了预处理器中非线性反应项的全部贡献,这对于表现出刚性反应的问题至关重要。给出了数值示例,以说明求解器的整体效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号