首页> 外文OA文献 >On robust face recognition via sparse encoding : the good, the bad, and the ugly
【2h】

On robust face recognition via sparse encoding : the good, the bad, and the ugly

机译:通过稀疏编码进行稳健的人脸识别:好,坏和丑陋

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the field of face recognition, Sparse Representation (SR) has received considerable attention during the past few years. Most of the relevant literature focuses on holistic descriptors in closed-set identification applications. The underlying assumption in SR-based methods is that each class in the gallery has sufficient samples and the query lies on the subspace spanned by the gallery of the same class. Unfortunately, such assumption is easily violated in the more challenging face verification scenario, where an algorithm is required to determine if two faces (where one or both have not been seen before) belong to the same person. In this paper, we first discuss why previous attempts with SR might not be applicable to verification problems. We then propose an alternative approach to face verification via SR. Specifically, we propose to use explicit SR encoding on local image patches rather than the entire face. The obtained sparse signals are pooled via averaging to form multiple region descriptors, which are then concatenated to form an overall face descriptor. Due to the deliberate loss spatial relations within each region (caused by averaging), the resulting descriptor is robust to misalignment & various image deformations. Within the proposed framework, we evaluate several SR encoding techniques: l1-minimisation, Sparse Autoencoder Neural Network (SANN), and an implicit probabilistic technique based on Gaussian Mixture Models. Thorough experiments on AR, FERET, exYaleB, BANCA and ChokePoint datasets show that the proposed local SR approach obtains considerably better and more robust performance than several previous state-of-the-art holistic SR methods, in both verification and closed-set identification problems. The experiments also show that l1-minimisation based encoding has a considerably higher computational than the other techniques, but leads to higher recognition rates.
机译:在面部识别领域,稀疏表示(SR)在过去几年中受到了相当大的关注。大多数相关文献集中于闭集识别应用中的整体描述符。基于SR的方法的基本假设是,图库中的每个类都有足够的样本,并且查询位于同一类图库所跨越的子空间上。不幸的是,在更具挑战性的人脸验证场景中很容易违反这样的假设,在这种情况下,需要一种算法来确定两个人脸(以前从未见过一个或两个)是否属于同一个人。在本文中,我们首先讨论为什么以前使用SR的尝试可能不适用于验证问题。然后,我们提出了一种通过SR进行面部验证的替代方法。具体来说,我们建议对局部图像补丁而不是整个面部使用显式SR编码。通过求平均将获得的稀疏信号合并,以形成多个区域描述符,然后将其串联起来以形成整体面部描述符。由于每个区域内的故意损失空间关系(通过平均导致),因此生成的描述符对于未对准和各种图像变形具有鲁棒性。在提出的框架内,我们评估了几种SR编码技术:l1最小化,稀疏自动编码器神经网络(SANN)和基于高斯混合模型的隐式概率技术。在AR,FERET,exYaleB,BANCA和ChokePoint数据集上进行的全面实验表明,在验证和封闭集识别问题上,所提出的局部SR方法比以前的几种最新的整体SR方法获得了更好,更鲁棒的性能。 。实验还表明,基于l1最小化的编码比其他技术具有更高的计算能力,但会导致更高的识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号