首页> 外文OA文献 >Wide-baseline keypoint detection and matching with wide-angle images for vision based localisation
【2h】

Wide-baseline keypoint detection and matching with wide-angle images for vision based localisation

机译:宽基线关键点检测并与广角图像匹配以实现基于视觉的定位

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis addresses the problem of detecting and describing the same scene points in different wide-angle images taken by the same camera at different viewpoints. This is a core competency of many vision-based localisation tasks including visual odometry and visual place recognition. Wide-angle cameras have a large field of view that can exceed a full hemisphere, and the images they produce contain severe radial distortion. When compared to traditional narrow field of view perspective cameras, more accurate estimates of camera egomotion can be found using the images obtained with wide-angle cameras. The ability to accurately estimate camera egomotion is a fundamental primitive of visual odometry, and this is one of the reasons for the increased popularity in the use of wide-angle cameras for this task. Their large field of view also enables them to capture images of the same regions in a scene taken at very different viewpoints, and this makes them suited for visual place recognition. However, the ability to estimate the camera egomotion and recognise the same scene in two different images is dependent on the ability to reliably detect and describe the same scene points, or ‘keypoints’, in the images. Most algorithms used for this purpose are designed almost exclusively for perspective images. Applying algorithms designed for perspective images directly to wide-angle images is problematic as no account is made for the image distortion. The primary contribution of this thesis is the development of two novel keypoint detectors, and a method of keypoint description, designed for wide-angle images. Both reformulate the Scale- Invariant Feature Transform (SIFT) as an image processing operation on the sphere. As the image captured by any central projection wide-angle camera can be mapped to the sphere, applying these variants to an image on the sphere enables keypoints to be detected in a manner that is invariant to image distortion. Each of the variants is required to find the scale-space representation of an image on the sphere, and they differ in the approaches they used to do this. Extensive experiments using real and synthetically generated wide-angle images are used to validate the two new keypoint detectors and the method of keypoint description. The best of these two new keypoint detectors is applied to vision based localisation tasks including visual odometry and visual place recognition using outdoor wide-angle image sequences. As part of this work, the effect of keypoint coordinate selection on the accuracy of egomotion estimates using the Direct Linear Transform (DLT) is investigated, and a simple weighting scheme is proposed which attempts to account for the uncertainty of keypoint positions during detection. A word reliability metric is also developed for use within a visual ‘bag of words’ approach to place recognition.
机译:本文解决了在同一摄像机不同视点的不同广角图像中检测和描述相同场景点的问题。这是许多基于视觉的本地化任务(包括视觉里程表和视觉位置识别)的核心能力。广角相机的视场可能超过整个半球,并且它们产生的图像包含严重的径向失真。与传统的窄视野透视相机相比,可以使用广角相机获得的图像找到更精确的相机自我估计。准确估计相机自我运动的能力是视觉里程表的基本原理,这是在此任务中使用广角相机越来越受欢迎的原因之一。它们的大视野还使它们能够捕获在非常不同的视点拍摄的场景中相同区域的图像,这使其适合于视觉位置识别。但是,估计相机自我运动并识别两个不同图像中相同场景的能力取决于可靠地检测和描述图像中相同场景点或“关键点”的能力。为此目的使用的大多数算法几乎都是专门为透视图设计的。由于没有考虑图像失真,将为透视图图像设计的算法直接应用于广角图像是有问题的。本文的主要贡献是针对广角图像开发了两种新颖的关键点检测器以及关键点描述方法。两者都将比例不变特征变换(SIFT)重新制定为球体上的图像处理操作。由于可以将任何中央投影广角相机捕获的图像映射到球体,因此将这些变体应用于球体上的图像可以以不变于图像失真的方式检测关键点。需要每种变体才能在球体上找到图像的比例空间表示形式,并且它们在执行此操作时所使用的方法也有所不同。使用真实和合成生成的广角图像进行的广泛实验被用于验证两个新的关键点检测器和关键点描述方法。这两个新的关键点检测器中最好的一个应用于基于视觉的定位任务,包括使用室外广角图像序列进行视觉测距和视觉位置识别。作为这项工作的一部分,研究了使用直接线性变换(DLT)的关键点坐标选择对自我估计的准确性的影响,并提出了一种简单的加权方案,该方案试图解决检测过程中关键点位置的不确定性。还开发了单词可靠性度量标准,以用于可视化的“单词袋”方法来进行位置识别。

著录项

  • 作者

    Hansen Peter Ian;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号