首页> 外文OA文献 >Non-redundant sequential association rule mining based on closed sequential patterns
【2h】

Non-redundant sequential association rule mining based on closed sequential patterns

机译:基于封闭顺序模式的非冗余顺序关联规则挖掘

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In many applications, e.g., bioinformatics, web access traces, system utilisation logs, etc., the data is naturally in the form of sequences. People have taken great interest in analysing the sequential data and finding the inherent characteristics or relationships within the data. Sequential association rule mining is one of the possible methods used to analyse this data. As conventional sequential association rule mining very often generates a huge number of association rules, of which many are redundant, it is desirable to find a solution to get rid of those unnecessary association rules. Because of the complexity and temporal ordered characteristics of sequential data, current research on sequential association rule mining is limited. Although several sequential association rule prediction models using either sequence constraints or temporal constraints have been proposed, none of them considered the redundancy problem in rule mining. The main contribution of this research is to propose a non-redundant association rule mining method based on closed frequent sequences and minimal sequential generators. We also give a definition for the non-redundant sequential rules, which are sequential rules with minimal antecedents but maximal consequents. A new algorithm called CSGM (closed sequential and generator mining) for generating closed sequences and minimal sequential generators is also introduced. A further experiment has been done to compare the performance of generating non-redundant sequential rules and full sequential rules, meanwhile, performance evaluation of our CSGM and other closed sequential pattern mining or generator mining algorithms has also been conducted. We also use generated non-redundant sequential rules for query expansion in order to improve recommendations for infrequently purchased products.
机译:在许多应用程序中,例如生物信息学,Web访问跟踪,系统利用率日志等,数据自然是序列形式的。人们对分析顺序数据以及查找数据中的固有特征或关系非常感兴趣。顺序关联规则挖掘是用于分析此数据的可能方法之一。由于常规的顺序关联规则挖掘通常会产生大量的关联规则,其中许多是多余的,因此希望找到一种解决方案来摆脱那些不必要的关联规则。由于顺序数据的复杂性和时间顺序特征,目前有关顺序关联规则挖掘的研究受到限制。尽管已经提出了使用顺序约束或时间约束的几种顺序关联规则预测模型,但它们都没有考虑规则挖掘中的冗余问题。这项研究的主要贡献是提出一种基于封闭频繁序列和最小顺序生成器的非冗余关联规则挖掘方法。我们还给出了非冗余顺序规则的定义,这些规则是具有最少先例但具有最大结果的顺序规则。还介绍了一种称为CSGM的新算法(封闭序列和生成器挖掘),用于生成封闭序列和最小序列生成器。已经进行了进一步的实验来比较生成非冗余顺序规则和完整顺序规则的性能,同时,还对我们的CSGM和其他封闭顺序模式挖掘或生成器挖掘算法进行了性能评估。我们还使用生成的非冗余顺序规则进行查询扩展,以改善对不经常购买产品的建议。

著录项

  • 作者

    Zang Hao;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号