首页> 外文OA文献 >Reduction of wasted energy in a volunteer computing system through Reinforcement Learning.
【2h】

Reduction of wasted energy in a volunteer computing system through Reinforcement Learning.

机译:通过强化学习减少志愿者计算机系统中浪费的能源。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Volunteer computing systems provide an easy mechanism for users who wish to perform large amounts of High Throughput Computing work. However, if the volunteer computing system is deployed over a shared set of computers where interactive users can seize back control of the computers this can lead to wasted computational effort and hence wasted energy. Determining on which resource to deploy a particular piece of work, or even to choose not to deploy the work at the current time, is a difficult problem to solve, depending both on the expected free time available on the computers within the Volunteer computing system and the expected runtime of the work – both of which are difficult to determine a priori. We develop here a Reinforcement Learning approach to solving this problem and demonstrate that it can provide a reduction in energy consumption between 30% and 53% depending on whether we can tolerate an increase in the overheads incurred.
机译:志愿计算系统为希望执行大量高吞吐量计算工作的用户提供了一种简便的机制。但是,如果将自愿计算系统部署在一组共享的计算机上,其中交互式用户可以抢回计算机的控制权,这可能会导致计算工作浪费,从而浪费能源。根据Volunteer计算系统中计算机上的可用预期空闲时间以及确定在当前时间不部署该工作,要决定在哪个资源上部署特定工作,或者甚至选择不选择在当前时间部署该工作。预期的工作时间-两者都很难确定先验。我们在这里开发了一种强化学习方法来解决此问题,并证明它可以使能耗降低30%到53%,具体取决于我们是否可以忍受所产生的间接费用的增加。

著录项

  • 作者

    McGough A.S.; Forshaw M.;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号