首页> 外文OA文献 >Design of a high altitude long endurance flying-wing solar-powered unmanned air vehicle
【2h】

Design of a high altitude long endurance flying-wing solar-powered unmanned air vehicle

机译:高空长寿命飞翼太阳能无人飞行器的设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The low-Reynolds number environment of high-altitude flight places severe demands on the aerodynamic design and stability and control of a high altitude, long endurance unmanned air vehicle (HALE UAV). The aerodynamic efficiency of a flying-wing configuration makes it an attractive design option for such an application and is investigated in the present work. The proposed configuration has a high-aspect ratio, swept-wing planform, the wing sweep being necessary to provide an adequate moment arm for outboard longitudinal and lateral control surfaces. A design optimization framework is developed under a MATLAB environment, combining aerodynamic, structural and stability analysis. Low-order analysis tools are employed to facilitate efficient computations, which is important when there are multiple optimization loops for the various engineering analyses. In particular, a vortex-lattice method is used to compute the wing planform aerodynamics, coupled to a two-dimensional panel method to derive aerofoil sectional characteristics. Integral boundary-layer methods are coupled to the panel method in order to predict flow separation boundaries during the design iterations. A quasi-analytical method is adapted for application to flying-wing configurations to predict the wing weight and a linear finite-beam element approach is used for structural analysis of the wing-box. Stability is a particular concern in the low-density environment of high-altitude flight for flying-wing aircraft and so provision of adequate directional stability and control power forms part of the optimization process. At present, a modified Genetic Algorithm is used in all of the optimization loops. Each of the low-order engineering analysis tools is validated using higher-order methods, to provide confidence in the use of these computationally-efficient tools in the present design-optimization framework. udThis paper includes the results of employing the present optimization tools in the design of a high-altitude, long endurance, flying-wing unmanned air vehicle to indicate that this is a viable design configuration option.
机译:高空飞行的低雷诺数环境对空气动力学设计以及对高海拔,长寿命的无人飞行器(HALE UAV)的稳定性和控制提出了严格的要求。飞翼配置的空气动力学效率使其成为此类应用的有吸引力的设计选择,并在本工作中进行了研究。所提出的构型具有高长宽比的后掠式飞机外形,机翼后掠是为舷外纵向和横向控制表面提供足够的力矩臂所必需的。在MATLAB环境下开发了设计优化框架,结合了空气动力学,结构和稳定性分析。使用低阶分析工具来促进高效的计算,这对于各种工程分析有多个优化循环时非常重要。尤其是,使用涡流格子法来计算机翼平面形空气动力学,并与二维面板方法耦合以得出机翼截面特性。整体边界层方法与面板方法耦合,以便在设计迭代期间预测流分离边界。准分析方法适用于飞行机翼构型以预测机翼重量,而线性有限元法则用于机翼箱的结构分析。在高密度飞行机翼飞行的低密度环境中,稳定性尤其受到关注,因此提供足够的方向稳定性和控制力是优化过程的一部分。目前,在所有优化循环中都使用了改进的遗传算法。每个低阶工程分析工具都使用高阶方法进行了验证,以使人们对在当前的设计优化框架中使用这些计算效率高的工具充满信心。 ud本文包括在高空,长寿命,飞翼无人飞行器的设计中采用当前优化工具的结果,以表明这是一种可行的设计配置方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号