首页> 外文OA文献 >Dynamic Real-Time Optimization of Transitions in Industrial Polymerization Processes using Solution Models
【2h】

Dynamic Real-Time Optimization of Transitions in Industrial Polymerization Processes using Solution Models

机译:使用解决方案模型动态实时优化工业聚合过程中的过渡

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

J. V. Kadam, W. Marquardt Lehrstuhl für Prozesstechnik, RWTH Aachen University, Turmstr. 46, 52064 Aachen, Germany B. Srinivasan, D. Bonvin Laboratoire d’Automatique, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland Optimization of Transitions in Industrial Polymerization Processes using Solution Models Increasing demand on delivering on-spec product, higher operating costs and diminishing profit margins in the polymerization industry require cost- optimal process operation. This has led to the development of new tools and techniques for the operation of polymerization processes. Besides the added complexity due to market-driven operation, polymerization processes have intrinsic characteristics that cause specific problems in applying advanced optimization and control techniques. Planned or unplanned polymer load and grade changes are typical transitions routinely performed in a polymerization process. In this contribution, transition optimization problems (e.g. minimization of the transition time or the amount of off-spec polymer product) under quality control are considered. We address the challenges faced by any polymerization control strategy, i.e. process uncertainty, which requires on-line updates of any off-line computed solution. Furthermore, it is assumed that measurements of key process variables are available both on- line and at the end of the transition. Two major measurement-based approaches are classified as: 1. Process model approach: Here, measurements are used on-line to correct the current state of the process and re-estimate key model parameters. The inputs are updated subsequently by a repetitive on-line solution of an optimization problem that utilizes a dynamic process model. 2. Solution model approach: Here, measurements are used to directly update the inputs using a parameterized solution model that has been obtained from off-line optimization using a nominal dynamic process model (this is explained later). In the solution model approach considered in this paper (see [1] for more details), the necessary conditions of optimality (NCO) are enforced using a solution model and measurements. Thus, the approach is also labeled NCO tracking [1]. The solution model is obtained by appropriately parameterizing a robust optimal solution of the optimization problem with uncertainty [2]. The solution model is defined in terms of the sequence of input arcs corresponding to constraint-seeking arcs (active path constraints) and sensitivity-seeking arcs. The constrained variables are kept active using simple PID-type controllers. Sensitivity-seeking input arcs minimize the objective function sensitivity. Terminal constraints are handled by updating the corresponding switching times in a run-to-run fashion using the constraint measurements available at the end of the transition. Furthermore, terminal constraints can also be enforced within a single run by proposing a model for predicting the terminal constrained variables or tracking feasible reference trajectories. For the sake of illustration, let us consider the optimal solution shown in Figure 1, where there is the terminal constraint ytf on y. The corresponding solution model includes three arcs: input upper bound arc (left), constraint-seeking arc (middle) and input lower bound arc (right). The input u is kept at its upper bound umax until the constraint y reaches its lower bound ymin that is kept active by manipulating u until the switching time ts is reached. This switching time, which is determined to satisfy the terminal constraint ytf, is adjusted on the basis of a prediction of ytf using a simple empirical. This empirical relationship has to be sufficiently conservative to guarantee end-point feasibility. We assume that this qualitative solution model remains the same in the presence of uncertainty. This might be restrictive in some cases, especially when solving a complex industrial optimization problem with many inputs as well as path and terminal constraints. Techniques to deal with changing sets of active constraints are explained elsewhere (see e.g. [3]). An industrial polymerization process is considered as a case study. The dynamic process model is fairly large with 2500 DAEs. Grade change transition in minimal time is targeted here. The optimization problem has three time-variant inputs and many path and terminal constraints. The optimization problem with nominal model parameters is solved off-line. The resulting solution is subsequently characterized to derive a robust solution model. It is verified that the solution model does not change for the class of uncertainty considered (unknown initial solvent concentration) and the choice of the initial steady state. Furthermore, it is assumed that polymer quality measurements are available on-line. The solution model is quite complex, thus leading to many controllers and switching times for enforcing the terminal constraints. The solution model optimization approach is applied using both within-run and run-to-run and updates for a number of uncertainty realizations. In most of the cases, the transition time is nearly optimal, which is verified by doing re-optimizations. Furthermore, in every realization of the class of uncertainty, all path and terminal constraints can be respected. This approach, in conjunction with techniques for on-line active set change and solution model detection, represents a very efficient and cost-effective operational strategy for general industrial problems. [pic] Keywords: Dynamic optimization, necessary conditions of optimality, optimizing control, constraint tracking, grade change, polymerization. [1] Srinivasan, B., D. Bonvin, E. Visser and S. Palanki (2002): Dynamic optimization of batch processes II: Role of measurements in handling uncertainty, Computers and Chemical Engineering 27, 27-44. [2] Schlegel, M. and W. Marquardt (2004): Direct sequential dynamic optimization with automatic switching structure detection, DYCOPS 2004, Massachusetts. [23 Kadam, J. V. and W. Marquardt (2004): Sensitivity-based solution updates in closed-loop dynamic optimization, DYCOPS 2004, Massachusetts.
机译:亚琛工业大学亚特兰大分校J. V. Kadam,W。Marquardt LehrstuhlfürProzesstechnik 46,52064 Aachen,Germany B.Srinivasan,D.Bonvin自动化技术实验室,ÉcolePolytechniqueFédéralede Lausanne,CH-1015瑞士洛桑使用解决方案模型优化工业聚合过程的过渡交付更高规格产品的需求越来越高聚合行业的运营成本和利润率的下降都要求成本优化的过程运营。这导致了用于聚合过程操作的新工具和技术的发展。除了由于市场驱动的操作而增加的复杂性之外,聚合过程还具有固有的特性,这些特性在应用高级优化和控制技术时会引起特定的问题。计划内或计划外的聚合物负载量和等级变化是聚合过程中常规执行的典型转换。在此贡献中,考虑了在质量控制下的过渡优化问题(例如过渡时间或不合格聚合物产物的量的最小化)。我们解决了任何聚合控制策略所面临的挑战,即过程不确定性,这需要对任何离线计算解决方案进行在线更新。此外,假设关键过程变量的测量可以在线使用,也可以在转换结束时使用。两种主要的基于测量的方法分类为:1.过程模型方法:此处,在线使用测量来校正过程的当前状态并重新估计关键模型参数。随后,通过使用动态过程模型的优化问题的重复在线解决方案来更新输入。 2.解决方案模型方法:此处,测量是通过使用参数化解决方案模型直接更新输入的,该参数化解决方案模型是使用名义上的动态过程模型从离线优化中获得的(稍后说明)。在本文考虑的解决方案模型方法中(更多详细信息,请参见[1]),使用解决方案模型和测量结果可以强制实现最优性(NCO)的必要条件。因此,该方法也被标记为NCO跟踪[1]。该解决方案模型是通过适当地参数化具有不确定性的优化问题的鲁棒最优解而获得的[2]。求解模型是根据与寻求约束弧(主动路径约束)和敏感性寻求弧对应的输入弧的顺序定义的。约束变量使用简单的PID型控制器保持激活状态。寻求灵敏度的输入电弧使目标函数的灵敏度最小化。终端约束通过使用过渡结束时可用的约束度量以逐次运行的方式更新相应的切换时间来处理。此外,还可以通过提出一个模型来预测终端约束变量或跟踪可行的参考轨迹,从而在单个运行中强制实施终端约束。为了说明起见,让我们考虑图1所示的最优解,其中在y上存在终端约束ytf。相应的解决方案模型包括三个弧:输入上限弧(左),约束寻求弧(中)和输入下限弧(右)。输入u保持在其上限umax处,直到约束y达到其下限ymin为止,该下限ymin通过操纵u直到达到切换时间ts保持有效。确定的满足终端约束条件ytf的切换时间可根据ytf的预测,使用简单的经验进行调整。这种经验关系必须足够保守才能保证端点的可行性。我们假设在存在不确定性的情况下,该定性解决方案模型保持不变。在某些情况下这可能是限制性的,尤其是在解决具有许多输入以及路径和终端约束的复杂工业优化问题时。处理活动约束集变化的技术在其他地方进行了说明(请参见例如[3])。以工业聚合过程为例。动态过程模型相当大,具有2500个DAE。这里的目标是在最短的时间内完成坡度转换。优化问题具有三个时变输入以及许多路径和终端约束。具有名义模型参数的优化问题可以离线解决。随后对所得解决方案进行特征化,以得出健壮的解决方案模型。验证了对于所考虑的不确定性类别(未知的初始溶剂浓度)和初始稳态的选择,求解模型不会发生变化。此外,假定聚合物质量测量值是在线可用的。解决方案模型非常复杂,因此会导致许多控制器和执行终端约束的切换时间。解决方案模型优化方法适用于内部运行和内部运行以及更新,用于许多不确定性实现。在大多数情况下,过渡时间几乎是最佳的,这可以通过重新优化来验证。此外,在不确定性类别的每种实现中,都可以考虑所有路径和终端约束。这种方法与在线活动集更改和解决方案模型检测技术相结合,代表了针对一般工业问题的非常有效且具有成本效益的运营策略。 [pic]关键字:动态优化,最优性的必要条件,优化控制,约束跟踪,等级变化,聚合。 [1] Srinivasan,B.,D。Bonvin,E。Visser和S. Palanki(2002):批处理的动态优化II:测量在处理不确定性中的作用,计算机和化学工程27,27-44。 [2] Schlegel,M.和W. Marquardt(2004):具有自动切换结构检测的直接顺序动态优化,马萨诸塞州DYCOPS 2004。 [23 Kadam,J. V.和W. Marquardt(2004):闭环动态优化中基于灵敏度的解决方案更新,马萨诸塞州DYCOPS 2004。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号