首页> 外文OA文献 >An improved differential evolution algorithm and its applications to orbit design
【2h】

An improved differential evolution algorithm and its applications to orbit design

机译:一种改进的差分进化算法及其在轨道设计中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Differential Evolution (DE) is a basic and robust evolutionary strategy that has been applied to determining the global optimum for complex optimization problems[1–5]. It was introduced in 1995 by Storn and Price [1] and has been successfully applied to optimization problems including nonlinear, non-differentiable, non-convex, and multi-model functions. DE algorithms show good convergence, high-reliability, simplicity, and a reduced number of controllable parameters [2]. Olds and Kluever [3] applied DE to an interplanetary trajectory optimization problem and demonstrated the effectiveness of DE to produce rapid solutions. Madavan [4] discussed various modifications to the DE algorithm, improved its computational efficiency, and applied it to aerodynamic shape optimization problems. DE algorithms are easy to use, as they require only a few robust control variables, which can be drawn from a well-defined numerical interval. However, the existing various DE algorithms also have limitations, being susceptible to instability and getting trapped into local optima[2]. Notable effort has been spent addressing this by coupling DE algorithms with other optimization algorithms (for example, Self Organizing Maps (SOM) [6], Dynamic Hill Climbing (DHC) [7], Neural Networks (NN) [7], Particle Swarm Optimization (PSO) [8]). In these cases, the additional algorithm is used as an additional loop within the optimization process, creating a hybrid system with an inner and outer loop. Such hybrid algorithms are inherently more complex and so the computation cost is increased. Attempting to address this, a self-adaptive DE was designed and applied to the orbit design problem for prioritized multiple targets by Chen[5]. However, the self-adaptive feature is somewhat limited as it relates only to the number of generations within the optimization. A Self-adaptive DE which can automatically adapt its learning strategies and the associated parameters during the evolving procedure was proposed by Qin and Suganthan[9] and 25 test functions were used to verify the algorithm.
机译:差分进化(DE)是一种基本且鲁棒的进化策略,已应用于确定复杂优化问题的全局最优[1-5]。它于1995年由Storn和Price [1]提出,并已成功地应用于优化问题,包括非线性,不可微,非凸和多模型函数。 DE算法显示出良好的收敛性,高可靠性,简单性以及可控参数的数量减少[2]。 Olds和Kluever [3]将DE应用于行星际轨迹优化问题,并证明了DE产生快速解的有效性。 Madavan [4]讨论了对DE算法的各种修改,提高了其计算效率,并将其应用于空气动力学形状优化问题。 DE算法易于使用,因为它们只需要几个鲁棒的控制变量,就可以从定义明确的数值间隔中得出这些变量。然而,现有的各种DE算法也有局限性,容易受到不稳定的影响,并陷入局部最优[2]。通过将DE算法与其他优化算法(例如,自组织映射(SOM)[6],动态爬山(DHC)[7],神经网络(NN)[7],粒子群)相结合,已花费了大量精力来解决此问题。优化(PSO)[8])。在这些情况下,附加算法将用作优化过程中的附加循环,从而创建具有内部和外部循环的混合系统。这样的混合算法本质上更加复杂,因此增加了计算成本。为了解决这个问题,Chen [5]设计了一种自适应DE,并将其应用于优先确定多个目标的轨道设计问题。但是,自适应功能在某种程度上受到限制,因为它仅与优化内的代数有关。 Qin和Suganthan [9]提出了一种自适应DE,可以在进化过程中自动适应其学习策略和相关参数[9],并使用25个测试函数来验证算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号