首页> 外文OA文献 >Deployment simulation of very large inflatable tensegrity reflectors
【2h】

Deployment simulation of very large inflatable tensegrity reflectors

机译:大型充气式张力反射器的展开模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Propulsion, energy collection, communication or habitation in space requires ever larger space structures for the exploration of our solar system and beyond. Due to the payload size restrictions of the current launch vehicles, deployable structures are the way to go to launch very large structures into orbit. This paper therefore presents the design and simulation of a tensegrity based structure with inflatable rigidizable tubes as compression struts. The literature review showed that inflatable structures are most promising for the development of deployable reflectors larger than twenty meters in diameter. Good compression performance and reliability can be achieved by employing rigidisable inflatable tubes. The concept presented in this paper will focus on the development and simulation of a one meter diameter hexagonal reflector substructure that can be easily expanded to larger diameters due to its modular design. The one meter diameter modular approach was chosen to be able to build a full size benchmark model to validate the numerical data in the future. Due to the fact that the tensegrity compression elements are not initiating at one specific location, a passive reaction gas inflation technique is proposed which makes the structure independent of any pumps or other active inflation devices. This paper will discuss the use of inflatable rigidizable elements and their counteraction with the rest of the tensegrity structure. Simulations have been undertaken to capture the deployment behaviour of the inflating tube while getting perturbated by the attached tensegrity tension cables. These simulations showed that the use of inflatable rigidisable struts in tensegrity assemblies can greatly decrease the system mass and stowed volume, especially for very large reflectors compared to conventional approaches.
机译:推进,收集能量,交流或居住在太空中需要更大的空间结构来探索我们的太阳系及其他地区。由于当前运载火箭的有效载荷尺寸限制,可展开结构是将超大型结构发射到轨道的方法。因此,本文介绍了以可膨胀的可充气管作为压缩支柱的基于张力的结构的设计和仿真。文献综述表明,充气结构对于开发直径大于20米的可展开反射器最有前途。通过使用可刚性充气管可以实现良好的压缩性能和可靠性。本文介绍的概念将集中于一米直径六边形反射器子结构的开发和仿真,由于其模块化设计,该子结构可以轻松扩展到更大的直径。选择一米直径的模块化方法是为了能够建立完整尺寸的基准模型,以便将来验证数值数据。由于张力压缩元件没有在一个特定位置启动,因此提出了一种被动反应气体充气技术,该技术使该结构独立于任何泵或其他主动充气装置。本文将讨论可充气的可刚性元件的使用及其与其余张力结构的相互作用。已经进行了模拟以捕获充气管的展开行为,同时受到附接的张紧张力电缆的干扰。这些模拟表明,在张紧组件中使用可充气的可刚性支撑杆可以大大减少系统质量和收起体积,尤其是与常规方法相比,对于非常大的反射镜而言。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号