首页> 外文OA文献 >Design and development of a deployable self-inflating adaptive membrane
【2h】

Design and development of a deployable self-inflating adaptive membrane

机译:可展开式自充气自适应膜的设计与开发

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Space structures nowadays are often designed to serve just one objective during their mission life, examples include truss structures that are used as support structures, solar sails for propulsion or antennas for communication. Each and every single one of these structures is optimized to serve just their distinct purpose and are more or less useless for the rest of the mission and therefore dead weight. By developing a smart structure that can change its shape and therefore adapt to different mission requirements in a single structure, the flexibility of the spacecraft can be increased by greatly decreasing the mass of the entire system. This paper will introduce such an adaptive structure called the Self-inflating Adaptive Membrane (SAM) concept which is being developed at the Advanced Space Concepts Laboratory of the University of Strathclyde. An idea presented in this paper is to adapt these basic changeable elements from nature’s heliotropism. Heliotropism describes a movement of a plant towards the sun during a day; the movement is initiated by turgor pressure change between adjacent cells. The shape change of the global structure can be significant by adding up these local changes induced by local elements, for example the cell’s length. To imitate the turgor pressure change between the motor cells in plants to space structures, piezoelectric micro pumps are added between two neighboring cells. A passive inflation technique is used for deploying the membrane at its destination in space. The trapped air in the spheres will inflate the spheres when subjected to vacuum, therefore no pump or secondary active deployment methods are needed. The paper will present the idea behind the adaption of nature’s heliotropism principle to space structures. The feasibility of the residual air inflation method is verified by LS-DYNA simulations and prototype bench tests under vacuum conditions. Additionally, manufacturing techniques and folding patterns are presented to optimize the actual bench test structure and to minimize the required storage volume. It is shown that through a bio-inspired concept, a high ratio of adaptability of the membrane can be obtained. The paper concludes with the design of a technology demonstrator for a sounding rocket experiment to be launched in March 2013 from the Swedish launch side Esrange.
机译:如今,空间结构通常被设计成在其任务生命期内仅服务于一个目标,例如用作支撑结构的桁架结构,用于推进的太阳帆或用于通信的天线。这些结构的每一个都经过优化,仅用于其独特的目的,在其余的任务中或多或少地无用,因此无用。通过开发可以改变形状并因此在单个结构中适应不同任务要求的智能结构,可以通过大大减少整个系统的质量来提高航天器的灵活性。本文将介绍一种称为自膨胀自适应膜(SAM)概念的自适应结构,该结构正在斯特拉斯克莱德大学的高级空间概念实验室中开发。本文提出的想法是,将这些基本的可变要素从大自然的向阳性中吸收出来。日光性描述了一天中植物向太阳的运动;运动是由相邻细胞之间的膨胀压力变化引起的。通过将由局部元素(例如单元格的长度)引起的局部变化相加,可以使全局结构的形状变化产生显着影响。为了模拟植物中运动细胞之间与空间结构之间的膨胀压力变化,在两个相邻的细胞之间添加了压电微型泵。被动充气技术用于将膜部署在太空中的目的地。当受到真空时,球体中捕获的空气将使球体膨胀,因此不需要泵或辅助主动展开方法。本文将提出将自然的向心性原理应用于空间结构背后的想法。 LS-DYNA模拟和真空条件下的原型台架试验证明了残留空气充气方法的可行性。此外,还介绍了制造技术和折叠样式,以优化实际的试验台结构并最小化所需的存储量。结果表明,通过生物启发的概念,可以获得高比例的膜适应性。论文的最后是为将于2013年3月从瑞典发射方Esrange发射的探空火箭实验设计的技术演示器的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号