首页> 外文OA文献 >Defining a method of evaluating die life performance by using finite element models (FEM) and a practical open die hot forging method
【2h】

Defining a method of evaluating die life performance by using finite element models (FEM) and a practical open die hot forging method

机译:定义使用有限元模型(FEM)评估模具寿命性能的方法和实用的开模热锻方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Die wear, which is defined as a surface damage or removal of material from one or both of two solid surfaces in a sliding, rolling or impact motion relative to one another, is considered the main cause of tool failure. Wear is responsible for 70% of tool failure and a potential source of high costs; as much as 30% per forging unit in the forging industries [1]. This paper presents a unique wear prediction and measurement method for open die forging using a modified Archard equation, 3D FE simulation (to represent the actual forging process precisely) and an industrial scale forging trial. The proposed tool and experimental design is aimed at facilitating a cost effective method of tool wear analysis and to establish a repeatable method of measurement .It creates a platform to test different type of lubricants and coatings on industrial scale environment. The forging trial was carried out using 2100T Schuler Screw press. A full factorial experiment design was used on 3D simulation to identify the process setting for creating a measurable amount of tool wear. Wear prediction of 28.5 μm based on the simulation correlated with both Infinite Focus Optical Microscope and Coordinate Measuring Machine (CMM) measurement results of the practical trial. Thermal camera reading showed temperature raise on the area with maximum wear, which suggests that increase in contact time, causes thermal softening on tool steel. The measurement showed that abrasive wear and adhesive wear are dominant failure modes on the tool under these process conditions.
机译:模具磨损被认为是造成工具故障的主要原因,模具磨损是指表面损坏或材料在两个实体表面中的一个或两个相对滑动,滚动或冲击运动中彼此相对移动。磨损是造成70%的工具故障的原因,也是造成高成本的潜在原因。在锻造行业中,每个锻造单元最多可占30%[1]。本文提出了一种使用改进的Archard方程,3D FE模拟(以精确表示实际锻造过程)和工业规模锻造试验的开模锻造的独特磨损预测和测量方法。提出的工具和实验设计旨在促进一种经济高效的工具磨损分析方法,并建立可重复的测量方法。它创建了一个在工业规模环境中测试不同类型的润滑剂和涂料的平台。锻造试验使用2100T Schuler螺旋压力机进行。在3D模拟中使用了完整的阶乘实验设计来确定用于创建可测量量的工具磨损的过程设置。根据与无限聚焦光学显微镜和坐标测量机(CMM)测量结果相关的模拟,磨损预测为28.5μm。热像仪读数显示,磨损最大的区域温度升高,这表明接触时间增加,导致工具钢热软化。测量表明,在这些工艺条件下,磨料磨损和粘合剂磨损是工具的主要失效模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号