首页> 外文OA文献 >Target detection and recognition in SAR imagery based on KFDA
【2h】

Target detection and recognition in SAR imagery based on KFDA

机译:基于KFDA的SAR图像目标检测与识别。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Current research on target detection and recognition from synthetic aperture radar (SAR) images is usually carried out separately. It is difficult to verify the ability of a target recognition algorithm for adapting to changes in the environment. To realize the whole process of SAR automatic target recognition (ATR), especially for the detection and recognition of vehicles, an algorithm based on kernel fisher discriminant analysis (KFDA) is proposed in this paper. First, in order to make a better description of the difference between background and target, KFDA is extended to the detection part. Image samples are obtained with a dual-window approach and features of the inner and outer window samples are extracted using KFDA. The difference between the features of inner and outer window samples is compared with a threshold to determine whether a vehicle exists. Second, for the target area, we propose an improved KFDA-IMED (Image Euclidean Distance) combined with a support vector machine (SVM) to recognize the vehicles. Experimental results validate the performance of our method. On the detection task, our proposed method obtains not only a high detection rate but also a low false alarm rate without using any prior information. For the recognition task, our method overcomes the SAR image aspect angle sensitivity, reduces the requirements for image preprocessing and improves the recognition rate.
机译:从合成孔径雷达(SAR)图像进行目标检测和识别的当前研究通常是单独进行的。难以验证目标识别算法适应环境变化的能力。为了实现SAR自动目标识别(ATR)的全过程,特别是对车辆的检测和识别,提出了一种基于核费舍尔判别分析(KFDA)的算法。首先,为了更好地描述背景和目标之间的差异,将KFDA扩展到检测部分。使用双窗口方法获得图像样本,并使用KFDA提取内部和外部窗口样本的特征。将内部和外部窗口样本的特征之间的差异与阈值进行比较,以确定是否存在车辆。其次,针对目标区域,我们提出了一种改进的KFDA-IMED(图像欧氏距离)与支持向量机(SVM)的组合,以识别车辆。实验结果验证了我们方法的性能。在检测任务上,我们提出的方法在不使用任何先验信息的情况下,不仅获得了较高的检测率,而且获得了较低的误报率。对于识别任务,我们的方法克服了SAR图像纵横比的敏感性,降低了图像预处理的要求,提高了识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号