首页> 外文OA文献 >Preconditioning for radial basis function partition of unity methods
【2h】

Preconditioning for radial basis function partition of unity methods

机译:统一方法径向基函数划分的预处理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Meshfree radial basis function (RBF) methods are of interest for solving partial differential equations due to attractive convergence properties, flexibility with respect to geometry, and ease of implementation. For global RBF methods, the computational cost grows rapidly with dimension and problem size, so localised approaches, such as partition of unity or stencil based RBF methods, are currently being developed. An RBF partition of unity method (RBF--PUM) approximates functions through a combination of local RBF approximations. The linear systems that arise are locally unstructured, but with a global structure due to the partitioning of the domain. Due to the sparsity of the matrices, for large scale problems, iterative solution methods are needed both for computational reasons and to reduce memory requirements. In this paper we implement and test different algebraic preconditioning strategies based on the structure of the matrix in combination with incomplete factorisations. We compare their performance for different orderings and problem settings and find that a no-fill incomplete factorisation of the central band of the original discretisation matrix provides a robust and efficient preconditioner.
机译:无网格径向基函数(RBF)方法由于具有吸引人的收敛特性,相对于几何形状的灵活性以及易于实现而对于求解偏微分方程非常有用。对于全局RBF方法,计算成本随着尺寸和问题大小的增长而迅速增长,因此当前正在开发局部化方法,例如基于单元或模板的RBF方法的划分。统一方法的RBF分区(RBF--PUM)通过局部RBF近似的组合来近似函数。出现的线性系统是局部非结构化的,但是由于域的划分而具有整体结构。由于矩阵的稀疏性,对于大规模问题,出于计算原因和减少内存需求,都需要迭代求解方法。在本文中,我们基于矩阵的结构并结合不完全因子分解来实施和测试不同的代数预处理策略。我们比较了它们在不同排序和问题设置下的性能,发现原始离散化矩阵中心带的不填充不完全分解可提供强大而有效的预处理器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号