首页> 外文OA文献 >Fault detection and identification based on combining logic and model in a wall-climbing robot
【2h】

Fault detection and identification based on combining logic and model in a wall-climbing robot

机译:基于逻辑和模型相结合的爬壁机器人故障检测与识别

摘要

A combined logic- and model-based approach to fault detection and identification (FDI) in a suction foot control system of a wall-climbing robot is presented in this paper. For the control system, some fault models are derived by kinematics analysis. Moreover, the logic relations of the system states are known in advance. First, a fault tree is used to analyze the system by evaluating the basic events (elementary causes), which can lead to a root event (a particular fault). Then, a multiple-model adaptive estimation algorithm is used to detect and identify the model-known faults. Finally, based on the system states of the robot and the results of the estimation, the model-unknown faults are also identified using logical reasoning. Experiments show that the proposed approach based on the combination of logical reasoning and model estimating is efficient in the FDI of the robot.
机译:提出了一种基于逻辑和模型相结合的爬壁机器人吸脚控制系统故障检测与识别方法。对于控制系统,通过运动学分析得出一些故障模型。此外,系统状态的逻辑关系是预先已知的。首先,故障树用于通过评估可能导致根本事件(特定故障)的基本事件(根本原因)来分析系统。然后,使用多模型自适应估计算法来检测和识别模型已知的故障。最后,根据机器人的系统状态和估计结果,还可以使用逻辑推理识别模型未知故障。实验表明,所提出的基于逻辑推理和模型估计相结合的方法在机器人的FDI中是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号