首页> 外文OA文献 >Compound Particle Optimization Using Speciation for Multimodal Function Optimization
【2h】

Compound Particle Optimization Using Speciation for Multimodal Function Optimization

机译:使用形态的复合粒子优化实现多峰函数优化

摘要

Multimodal optimization problems pose a new challenge to evolutionary computation, since they usually not only require a search for one global optimum, but also simultaneously locating multiple optima. This paper presents a new variant of particle swarm optimization, which incorporates the notion of speciation into the compound particle optimization for solving multimodal functions. In the proposed species-based compound particle swarm optimization (SCPSO), several species containing compound particles are adaptively formed according to their similarity at each iteration step. The corresponding techniques of the compound particle, which are inspired by physics mechanisms, provides successive local improvements for each species to precisely and quickly identifying multiple global optima. Experiments on multimodal test functions suggest that SCPSO is more computationally efficient than the conventional species-based PSO.
机译:多峰优化问题对进化计算提出了新的挑战,因为它们通常不仅需要搜索一个全局最优值,而且还需要同时定位多个最优值。本文提出了一种粒子群优化的新变体,该算法将物种形成的概念纳入了用于解决多峰函数的复合粒子优化中。在提出的基于物种的复合粒子群优化算法(SCPSO)中,根据每个迭代步骤的相似性,自适应地形成了几种包含复合粒子的物种。受物理机制启发,复合粒子的相应技术为每个物种提供了连续的局部改进,以精确快速地确定多个全局最优值。多模式测试功能的实验表明,SCPSO比常规的基于物种的PSO具有更高的计算效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号