首页> 外文OA文献 >A LOW COST EEG BASED BCI PROSTHETIC USINGudMOTOR IMAGERY
【2h】

A LOW COST EEG BASED BCI PROSTHETIC USINGudMOTOR IMAGERY

机译:基于低成本脑电BCI假体的使用 ud马达想象

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Brain Computer Interfaces (BCI) provide the opportunity to control external devices using the brainudElectroEncephaloGram (EEG) signals. In this paper we propose two software framework in order toudcontrol a 5 degree of freedom robotic and prosthetic hand. Results are presented where an EmotivudCognitive Suite (i.e. the 1st framework) combined with an embedded software system (i.e. an open sourceudArduino board) is able to control the hand through character input associated with the taught actions ofudthe suite. This system provides evidence of the feasibility of brain signals being a viable approach toudcontrolling the chosen prosthetic. Results are then presented in the second framework. This latter oneudallowed for the training and classification of EEG signals for motor imagery tasks. When analysing theudsystem, clear visual representations of the performance and accuracy are presented in the results using audconfusion matrix, accuracy measurement and a feedback bar signifying signal strength. Experiments withudvarious acquisition datasets were carried out and with a critical evaluation of the results given. Finallyuddepending on the classification of the brain signal a Python script outputs the driving command to theudArduino to control the prosthetic. The proposed architecture performs overall good results for the designudand implementation of economically convenient BCI and prosthesis.
机译:脑计算机接口(BCI)提供了使用Brain udElectroEncephaloGram(EEG)信号控制外部设备的机会。在本文中,我们提出了两个软件框架,以控制5个自由度的机械手和假肢。在Emotiv udCognitive套件(即第一个框架)与嵌入式软件系统(即开源 udArduino板)相结合的情况下,将通过与套件的教导操作相关的字符输入来控制手,从而给出结果。该系统提供了脑信号作为一种可行的方法来控制所选假体的可行性的证据。然后将结果显示在第二个框架中。后一个对于训练运动图像任务的EEG信号进行训练和分类。分析 udsystem时,使用 udconfusion矩阵,准确性测量和表示信号强度的反馈条,可以在结果中清晰显示性能和准确性的直观表示。进行了各种采集数据集的实验,并对给出的结果进行了严格的评估。最后,根据大脑信号的分类,Python脚本将驱动命令输出到udArduino,以控制假肢。所提出的体系结构在经济方便的BCI和假体的设计实施中取得了总体良好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号