首页> 外文OA文献 >Comparative Study of Inference Methods for Bayesian Nonnegative Matrix Factorisation
【2h】

Comparative Study of Inference Methods for Bayesian Nonnegative Matrix Factorisation

机译:贝叶斯非负矩阵分解的推理方法的比较研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we study the trade-offs of different inference approaches for Bayesian matrix factorisation methods, which are commonly used for predicting missing values, and for finding patterns in the data. In particular, we consider Bayesian nonnegative variants of matrix factorisation and tri-factorisation, and compare non-probabilistic inference, Gibbs sampling, variational Bayesian inference, and a maximum-a-posteriori approach. The variational approach is new for the Bayesian nonnegative models. We compare their convergence, and robustness to noise and sparsity of the data, on both synthetic and real-world datasets. Furthermore, we extend the models with the Bayesian automatic relevance determination prior, allowing the models to perform automatic model selection, and demonstrate its efficiency. Code and data related to this chapter are availabe at: https://github.com/ThomasBrouwer/BNMTF_ARD.
机译:在本文中,我们研究了贝叶斯矩阵分解方法的不同推理方法之间的权衡,这些方法通常用于预测缺失值和查找数据中的模式。特别是,我们考虑矩阵分解和三分解的贝叶斯非负变量,并比较非概率推理,吉布斯采样,变分贝叶斯推理和最大后验方法。对于贝叶斯非负模型,变分方法是新的。在合成数据集和实际数据集上,我们将它们的收敛性,鲁棒性与数据的噪声和稀疏性进行比较。此外,我们使用贝叶斯自动相关性确定来扩展模型,从而允许模型执行自动模型选择,并证明其效率。与本章相关的代码和数据位于:https://github.com/ThomasBrouwer/BNMTF_ARD。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号