首页> 外文OA文献 >An Autonomous Learning-Based Algorithm for Joint Channel and Power Level Selection by D2D Pairs in Heterogeneous Cellular Networks
【2h】

An Autonomous Learning-Based Algorithm for Joint Channel and Power Level Selection by D2D Pairs in Heterogeneous Cellular Networks

机译:基于自主学习的异构蜂窝网络中D2D对选择联合信道和功率电平的算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study the problem of autonomous operation of the device-to-device (D2D) pairs in a heterogeneous cellular network with multiple base stations (BSs). The spectrum bands of the BSs (that may overlap with each other) comprise the sets of orthogonal wireless channels. We consider the following spectrum usage scenarios: 1) the D2D pairs transmit over the dedicated frequency bands and 2) the D2D pairs operate on the shared cellular/D2D channels. The goal of each device pair is to jointly select the wireless channel and power level to maximize its reward, defined as the difference between the achieved throughput and the cost of power consumption, constrained by its minimum tolerable signal-to-interference-plus-noise ratio requirements. We formulate this problem as a stochastic noncooperative game with multiple players (D2D pairs) where each player becomes a learning agent whose task is to learn its best strategy (based on the locally observed information) and develop a fully autonomous multi-agent Q-learning algorithm converging to a mixed-strategy Nash equilibrium. The proposed learning method is implemented in a long term evolution-advanced network and evaluated via the OPNET-based simulations. The algorithm shows relatively fast convergence and near-optimal performance after a small number of iterations.
机译:我们研究了具有多个基站(BS)的异构蜂窝网络中设备到设备(D2D)对的自主操作问题。 BS的频谱带(可以彼此重叠)包括正交无线信道的集合。我们考虑以下频谱使用方案:1)D2D对在专用频段上传输,2)D2D对在共享的蜂窝/ D2D信道上运行。每个设备对的目标是共同选择无线信道和功率水平,以最大程度地提高其回报率,后者的定义是所实现的吞吐量与功耗成本之间的差,受其最小容忍的信号干扰干扰噪声的限制比率要求。我们将此问题表述为具有多个参与者(D2D对)的随机非合作游戏,其中每个参与者成为学习代理,其任务是学习最佳策略(基于本地观察到的信息)并开发完全自主的多代理Q学习算法收敛到混合策略纳什均衡。所提出的学习方法在长期演进的高级网络中实施,并通过基于OPNET的仿真进行评估。经过少量迭代后,该算法显示出相对快速的收敛性和接近最佳的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号