首页> 外文OA文献 >Geological Production And Microbial Consumption of Hydrogen During Low-Temperature Water-Rock Reactions
【2h】

Geological Production And Microbial Consumption of Hydrogen During Low-Temperature Water-Rock Reactions

机译:低温水-岩反应过程中氢的地质产生和微生物消耗

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Geologically derived hydrogen gas supports hydrothermal vent ecosystems on Earth today and may have been an abundant energy source available during the origin and evolution of early life on Earth. The existence of deep subsurface microbial ecosystems is dependent on the ability of the water-rock environment to provide a suitable habitat for life, which has not been well quantified. This dissertation provides insights into the potential for low temperature water-rock reaction systems to support H2-utilizing microbial life and, in turn, for microbial activity to directly affect the water-rock reaction pathways and processes.The partitioning of Fe into secondary minerals is an important control on the generation of H2. However, characterization of these phases is hampered by the small amount of reaction products generated in laboratory scale experiments. A synchrotron x-ray based method integrating micro-spectroscopy and micro-XRF data collection and processing was developed to characterize the speciation of Fe in the rare, microscale solid phase reaction products. In H2- generating experiments conducted at 100°C, Fe(III)-oxides were detected on the surface of spinel particles, while Fe(II)-brucites and talcs were associated with dissolving olivine and pyroxene surfaces. The spinels may be required to mediate electron transfer between Fe(II) and water. Thus, H2-generation is likely a surface controlled process catalyzed by spinels and accommodated by the formation of Fe(III)-oxides. In such a system, microbial colonization of reactive surfaces may be strongly controlled by the heterogeneous distribution of H2 production.To determine if an Archaeal methanogen present in-situ would affect the solid and aqueous geochemistry of water-rock reactions in distinct ways, a water-basalt system amended with Fe0 was inoculated with a methanogen. The reaction products in the abiotic experiment were dominated by Fe-phyllosilicates in contrast to the culture experiment in which an Febearing pyroxene was detected and Fe-phyllosilicates were absent. The unique secondary mineral assemblage in the presence of an active methanogen suggests that H2-utilizing microorganisms do influence the reaction pathways. Therefore, the work presented in this dissertation has helped to advance our understanding of low-temperature water-rock reactions and the potential for microbial activity to survive in and affect these systems.
机译:地质提取的氢气为当今地球上的热液喷口生态系统提供了支持,在地球早期生命的起源和演化过程中,它可能已经成为一种丰富的能源。深层地下微生物生态系统的存在取决于水-岩环境为生活提供合适的栖息地的能力,目前还没有很好的量化方法。本论文为低温水-岩反应系统支持H2利用微生物生命以及反过来使微生物活性直接影响水-岩反应路径和过程的潜力提供了见解。 H2生成的重要控制。但是,这些相的表征受到实验室规模实验中生成的少量反应产物的阻碍。开发了一种基于同步加速器X射线的方法,该方法结合了微光谱学和微XRF数据收集与处理功能,以表征稀有的微尺度固相反应产物中铁的形态。在100°C下进行的H2生成实验中,在尖晶石颗粒表面检测到Fe(III)-氧化物,而Fe(II)-brucite和滑石与溶解橄榄石和辉石表面有关。可能需要尖晶石来介导Fe(II)与水之间的电子转移。因此,H 2的产生可能是由尖晶石催化并受Fe(III)-氧化物形成的表面控制过程。在这样的系统中,反应性表面的微生物定殖可能受到H2产生的不均匀分布的强烈控制。要确定原位存在的古细菌产甲烷菌是否会以不同的方式影响水-岩反应的固体和含水地球化学,水用产甲烷菌接种了Fe0修饰的玄武岩系统。非生物实验中的反应产物以铁-页硅酸盐为主导,而培养实验中检测到了二茂铁,而铁-页硅酸盐却不存在。在存在活性产甲烷菌的情况下,独特的次生矿物集合表明利用H2的微生物确实会影响反应路径。因此,本文提出的工作有助于增进我们对低温水-岩反应以及微生物活性在这些系统中生存和影响的潜力的理解。

著录项

  • 作者

    Mayhew Lisa Ellen;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号