首页> 外文OA文献 >Design of Logical Topologies: A Linear Formulation for Wavelength-Routed Optical Networks with No Wavelength Changers
【2h】

Design of Logical Topologies: A Linear Formulation for Wavelength-Routed Optical Networks with No Wavelength Changers

机译:逻辑拓扑设计:无波长转换器的波长路由光网络的线性公式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the problem of constructing logical topologies over a wavelength-routed optical network with no wavelength changers. We present a general linear formulation which considers routing traffic demands, and routing and assigning wavelengths to lightpaths, as a combined optimization problem. The formulation also takes into account the maximum number of hops a lightpath is permitted to take, multiple logical links in the logical topology, multiple physical links in the physical topology, and symmetry/asymmetry restrictions in designing logical topologies. The objective is to minimize congestion. We show by examples how equality and inequality logical degreeconstraints have a bearing on congestion. We prove that, under certain conditions, having equality degree constraints with multiple edges allowed in the design of logical topologies does not affect congestion. This helps in reducing the dimensionality of the search space and hence speeds up the search for an optimal solution of the linear formulation.We solve the linear formulation for small examples and show the tradeoff between congestion, number of wavelengths available and the maximum number of hops a lightpath is allowed to take. For large networks, we solve the linear formulation by relaxing the integer constraints. We develop topology design algorithms for large networks based on rounding the solutions obtained by solving the relaxed problem. Since the whole problem is linearizable, the solution obtained by relaxation of the integer constraints yields a lower bound on congestion. This is useful in comparing the efficiency of our heuristic algorithms. Following Bienstock and Gunluk, 1995, we introduce a cutting plane which helps in obtaining better lower bounds on congestion and also enables us to reduce the previously obtained upper bounds on congestion.
机译:我们考虑在没有波长转换器的波长路由光网络上构建逻辑拓扑的问题。我们提出了一种一般的线性公式,该公式将路由流量需求以及路由和波长分配给光路考虑为组合的优化问题。该公式还考虑了允许光路径进行的最大跳数,逻辑拓扑中的多个逻辑链接,物理拓扑中的多个物理链接以及设计逻辑拓扑时的对称/不对称限制。目的是最小化拥塞。我们通过示例展示平等和不平等的逻辑程度约束如何影响拥塞。我们证明,在某些条件下,在逻辑拓扑的设计中允许具有多个边的相等度约束不会影响拥塞。这有助于减小搜索空间的维数,从而加快对线性公式的最佳解的搜索速度。允许采取光路。对于大型网络,我们通过放宽整数约束来求解线性公式。我们基于解决宽松问题而获得的解决方案的四舍五入,为大型网络开发拓扑设计算法。由于整个问题是可线性化的,因此通过放宽整数约束而获得的解决方案会导致拥塞的下限。这在比较我们的启发式算法的效率时很有用。继Bienstock和Gunluk(1995年)之后,我们引入了一种切割平面,该切割平面有助于获得更好的交通拥堵下限,也使我们能够减少先前获得的交通拥堵上限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号