首页> 外文OA文献 >RESOURCE AND ENVIRONMENT AWARE SENSOR COMMUNICATIONS: FRAMEWORK, OPTIMIZATION, AND APPLICATIONS
【2h】

RESOURCE AND ENVIRONMENT AWARE SENSOR COMMUNICATIONS: FRAMEWORK, OPTIMIZATION, AND APPLICATIONS

机译:资源和环境感知传感器通信:框架,优化和应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent advances in low power integrated circuit devices,micro-electro-mechanical system (MEMS) technologies, andcommunications technologies have made possible the deployment oflow-cost, low power sensors that can be integrated to form wirelesssensor networks (WSN). These wireless sensor networks have vastimportant applications, i.e.: from battlefield surveillance systemto modern highway and industry monitoring system; from the emergencyrescue system to early forest fire detection and the verysophisticated earthquake early detection system. Having the broadrange of applications, the sensor network is becoming an integralpart of human lives. However, the success of sensor networksdeployment depends on the reliability of the network itself. Thereare many challenging problems to make the deployed network morereliable. These problems include but not limited to extendingnetwork lifetime, increasing each sensor node throughput, efficientcollection of information, enforcing nodes to collaborativelyaccomplish certain network tasks, etc. One important aspect indesigning the algorithm is that the algorithm should be completelydistributed and scalable. This aspect has posed a tremendouschallenge in designing optimal algorithm in sensor networks.This thesis addresses various challenging issues encountered inwireless sensor networks. The most important characteristic insensor networks is to prolong the network lifetime. However, due tothe stringent energy requirement, the network requires highly energyefficient resource allocation. This highly energy-efficient resourceallocation requires the application of an energy awareness system.In fact, we envision a broader resource and environment awareoptimization in the sensor networks. This framework reconfigures theparameters from different communication layers according to itsenvironment and resource. We first investigate the application ofonline reinforcement learning in solving the modulation and transmitpower selection. We analyze the effectiveness of the learningalgorithm by comparing the effective good throughput that issuccessfully delivered per unit energy as a metric. This metricshows how efficient the energy usage in sensor communication is. Inmany practical sensor scenarios, maximizing the energy efficient ina single sensor node may not be sufficient. Therefore, we continueto work on the routing problem to maximize the number of deliveredpacket before the network becomes useless. The useless network ischaracterized by the disintegrated remaining network. We design aclass of energy efficient routing algorithms that explicitly takesthe connectivity condition of the remaining network in to account.We also present the distributed asynchronous routing implementationbased on reinforcement learning algorithm. This work can be viewedas distributed connectivity-aware energy efficient routing. We thenexplore the advantages obtained by doing cooperative routing fornetwork lifetime maximization. We propose a power allocation in thecooperative routing called the maximum lifetime power allocation.The proposed allocation takes into account the residual energy inthe nodes when doing the cooperation. In fact, our criterion letsthe nodes with more energy to help more compared to the nodes withless energy. We continue to look at the problem of cooperationenforcement in ad-hoc network. We show that by combining therepeated game and self learning algorithm, a better cooperationpoint can be obtained. Finally, we demonstrate an example ofchannel-aware application for multimedia communication. In all casestudies, we employ optimization scheme that is equipped with theresource and environment awareness. We hope that the proposedresource and environment aware optimization framework will serve asthe first step towards the realization of intelligent sensorcommunications.
机译:低功耗集成电路器件,微机电系统(MEMS)技术和通信技术的最新进展使部署低成本,低功耗传感器成为可能,这些传感器可以集成形成无线传感器网络(WSN)。这些无线传感器网络具有广泛的重要应用,即:从战场监视系统到现代高速公路和工业监视系统;从紧急救援系统到森林火灾的早期检测,再到复杂的地震早期检测系统。传感器网络具有广泛的应用范围,正在成为人类生活中不可或缺的一部分。但是,传感器网络部署的成功取决于网络本身的可靠性。为了使部署的网络更加可靠,存在许多具有挑战性的问题。这些问题包括但不限于延长网络寿命,增加每个传感器节点的吞吐量,信息的有效收集,强制节点共同完成某些网络任务等。设计该算法的一个重要方面是该算法应完全分布式且可扩展。这方面在设计传感器网络中的最佳算法方面提出了巨大的挑战。本文解决了无线传感器网络中遇到的各种挑战性问题。传感器网络的最重要特征是延长网络寿命。然而,由于对能量的严格要求,网络需要高能效的资源分配。这种高度节能的资源分配需要应用能源意识系统。事实上,我们设想在传感器网络中进行更广泛的资源和环境意识优化。该框架根据其环境和资源重新配置来自不同通信层的参数。我们首先研究在线强化学习在解决调制和发射功率选择中的应用。通过比较每单位能量成功交付的有效良好吞吐量,我们分析了学习算法的有效性。这度量了传感器通信中能量使用的效率。在许多实际的传感器场景中,在单个传感器节点中最大化能源效率可能还不够。因此,我们将继续致力于路由问题,以在网络变得无用之前最大程度地提高已交付数据包的数量。无用的网络的特征在于分解后的剩余网络。我们设计了一种能效路由算法,明确考虑了剩余网络的连通性条件。我们还提出了基于强化学习算法的分布式异步路由实现。可以将这项工作视为分布式感知连接的节能路由。然后,我们探索了通过进行协作式路由以获得网络寿命最大化所获得的优势。我们提出了在合作路由中的最大寿命功率分配,该功率分配考虑了进行协作时节点中的剩余能量。实际上,与没有能量的节点相比,我们的标准允许具有更多能量的节点提供更多帮助。我们继续研究ad-hoc网络中的合作执行问题。我们证明,通过将重复的博弈与自学习算法相结合,可以获得更好的合作点。最后,我们演示了一个用于多媒体通信的通道感知应用程序示例。在所有情况下,我们都采用具有资源和环境意识的优化方案。我们希望所提出的资源和环境意识优化框架将成为实现智能传感器通信的第一步。

著录项

  • 作者

    Pandana Charles;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号