首页> 外文OA文献 >ENSEMBLE KALMAN FILTER EXPERIMENTS WITH A PRIMITIVE-EQUATION GLOBAL MODEL
【2h】

ENSEMBLE KALMAN FILTER EXPERIMENTS WITH A PRIMITIVE-EQUATION GLOBAL MODEL

机译:具有本原方程全局模型的Enhanced Kalman滤波器实验

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ultimate goal is to develop a path towards an operational ensemble Kalman filtering (EnKF) system. Several approaches to EnKF for atmospheric systems have been proposed but not systematically compared. The sensitivity of EnKF to the imperfections of forecast models is unclear. This research explores two questions: 1. What are the relative advantages and disadvantages of two promising EnKF methods? 2. How large are the effects of model errors on data assimilation, and can they be reduced by model bias correction?Chapter 2 contains a theoretical review, followed by the FORTRAN development and testing of two EnKF methods: a serial ensemble square root filter (serial EnSRF, Whitaker and Hamill 2002) and a local EnKF (LEKF, Ott et al. 2002; 2004). We reproduced the results obtained by Whitaker and Hamill (2002) and Ott et al. (2004) on the Lorenz (1996) model. If we localize the LEKF error covariance, LEKF outperforms serial EnSRF. We also introduce a method to objectively estimate the optimal covariance inflation.In Chapter 3 we apply the two EnKF methods and the three-dimensional variational method (3DVAR) to the SPEEDY primitive-equation global model (Molteni 2003), a fast but relatively realistic model. Perfect model experiments show that EnKF greatly outperforms 3DVAR. The 2-day forecast "errors of the day" are very similar to the analysis errors, but they are not similar among different methods except in low ensemble dimensional regions. Overall, serial EnSRF outperforms LEKF, but their difference is substantially reduced if we localize the LEKF error covariance or increase the ensemble size. Since LEKF is much more efficient than serial EnSRF when using parallel computers and many observations, LEKF would be the only feasible choice in operations.In Chapter 4 we remove the perfect model assumption using the NCEP/NCAR reanalysis as the "nature" run. The advantage of EnKF to 3DVAR is reduced. When we apply the model bias estimation proposed by Dee and da Silva (1998), we find that the full dimensional model bias estimation fails. However, if instead we assume that the bias is low dimensional, we obtain a substantial improvement in the EnKF analysis.
机译:最终目标是开发一条通向运营集成卡尔曼滤波(EnKF)系统的道路。已经提出了几种用于大气系统的EnKF方法,但是没有系统地进行比较。 EnKF对预测模型不完善的敏感性尚不清楚。这项研究探讨了两个问题:1.两种有前途的EnKF方法的相对优缺点是什么? 2.模型误差对数据同化的影响有多大,可以通过模型偏差校正来减少?第二章包含理论综述,然后进行FORTRAN的开发和两种EnKF方法的测试:串行集成平方根滤波器( EnSRF系列,Whitaker和Hamill,2002年)和本地EnKF(LEKF,Ott等,2002年; 2004年)。我们复制了Whitaker和Hamill(2002)和Ott等人获得的结果。 (2004)的Lorenz(1996)模型。如果我们定位LEKF误差协方差,则LEKF的性能将优于串行EnSRF。我们还介绍了一种客观地估计最优协方差膨胀的方法。在第3章中,我们将两种EnKF方法和三维变分方法(3DVAR)应用于SPEEDY基本方程全局模型(Molteni 2003),这是一种快速但相对现实的方法模型。完美的模型实验表明,EnKF的性能大大优于3DVAR。 2天的预测“一天中的错误”与分析错误非常相似,但是在不同方法中,除了在低整体维度区域中,它们并不相似。总体而言,串行EnSRF的性能优于LEKF,但如果我们定位LEKF误差协方差或增加整体大小,则它们的差异将大大减小。由于使用并行计算机和许多观测值时,LEKF比串行EnSRF效率高得多,因此LEKF将是操作中唯一可行的选择。在第4章中,我们将NCEP / NCAR重新分析作为“自然”运行,删除了理想的模型假设。 EnKF到3DVAR的优势降低了。当我们应用Dee和da Silva(1998)提出的模型偏差估计时,发现全维模型偏差估计失败。但是,如果相反,我们假设偏差是低维的,则我们在EnKF分析中将获得实质性的改进。

著录项

  • 作者

    Miyoshi Takemasa;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号